
Asynchronous Distributed Searchlight Scheduling

Karl J. Obermeyer Anurag Ganguli Francesco Bullo

Abstract— This paper develops and compares two asyn-
chronous distributed scheduling algorithms for multiple con-
trolled searchlights in nonconvex polygonal environments. A
searchlight is a ray emitted by source location that (i) cannot
penetrate the boundary of the environment and (ii) undergoes
controlled slewing about its source location. Evaders move
inside the environment along continuous trajectories and are
detected precisely when they are on the searchlight ray at
some time instant. The objective is for the searchlights to
detect any evader in finite time and to do so using only local
sensing and limited communication among them. The first
algorithm we develop, called the Distributed One Way Sweep
Strategy (DOWSS), is a distributed version of an algorithm
described originally in 1990 by Sugihara et al [1]; this algorithm
may be slow in “sweeping” the environment because only one
searchlight slews at a time. Second we develop an algorithm,
called the Parallel Tree Sweep Strategy (PTSS), in which
searchlights sweep concurrently under the assumption that
they are placed in appropriate locations; for this algorithm
we establish linear completion time.

I. I NTRODUCTION

Consider a group of robotic agents guarding a nonconvex
polygonal environment, e.g., a floor plan. For simplicity, we
model the agents as point masses. Each agent is equipped
with a single unidirectional sweeping sensor called asearch-
light (imagine a ray of light such as a laser range finder
emanating from each agent). A searchlight aims only in one
direction at a time and cannot penetrate the boundary of the
environment, but its direction can be changed continuously
by the agent. A point is detected by a searchlight at some
instant if and only if the point lies on the ray. An evader
is any point which can move continuously with unbounded
speed. TheSearchlight Scheduling Problemis as follows.

Find a schedule to slew a set of stationary search-
lights such that any evader in an environment will
necessarily be detected in finite time.

A searchlight problem instance consists of an environment
and a set of stationary guard positions. A graphical descrip-
tion of our objective is given in Fig. 1.

To our knowledge the searchlight scheduling problem was
first introduced in the inspiring paper by Sugihara, Suzuki
and Yamashita in [1], which considers simple polygonal

This work has been supported in part by AFOSR MURI Award F49620-
02-1-0325, NSF Award CMS-0626457, and a DoD SMART fellowship.

Karl J. Obermeyer and Francesco Bullo are with the Depart-
ment of Mechanical Engineering, University of California atSanta
Barbara, Santa Barbara, CA 93106, USA,karl@engr.ucsb.edu,
bullo@engineering.ucsb.edu

Anurag Ganguli is with the Coordinated Science Laboratory,University
of Illinois at Urbana-Champaign, and with the Department of Mechanical
and Environmental Engineering, University of California atSanta Barbara,
Santa Barbara, CA 93106, USA,aganguli@uiuc.edu

Fig. 1. Simulation results of the PTSS algorithm described inSection IV-
B, executed by agents (black dots) in a polygon shaped like a typical floor
plan. Left to right, moving evaders (small yellow squares) disappear as
they are detected by searchlights (red). The cleared regiongrows until it
encompasses the entire environment.

environments and stationary searchlights. The work in [2]
extends [1] by considering guards with multiple searchlights
(they call a guard possessingk searchlights ak-searcher)
and polygonal environments containing holes. Some papers
involving mobile searchlights, sometimes calling themflash-
lights or beam detectors, are [3], [4], [5], and [6]. Closely
related is the Art Gallery Problem, namely the problem of
finding a minimum set of locations from which the entire
polygon is visible. Many variations on the Art Gallery
Problem are wonderfully surveyed in [7], [8], and [9].
With an emphasis on practical imaging considerations, [10]
describes a centralized task-specific procedure for choosing
the locations of cameras in a network.

Assume now that each member of the group of guards is
equipped with an omnidirectional line-of-sight sensor. Bya
line-of-sight sensor, we mean any device or combination of
devices that can be used to determine, in its line-of-sight,(i)
the position or state of another guard, and (ii) the distance
to the boundary of the environment. By omnidirectional, we
mean that the field-of-vision for the sensor is2π radians.
There exist distributed algorithms to deploy asynchronous
mobile robots with such omnidirectional sensors into non-
convex environments, and they are guaranteed to converge to
fixed positions from which the entire environment is visible,
e.g., [11] and [12]. At least one algorithm exists which
guarantees the ancillary benefit of the final guard positions
having a connected visibility graph ([12]). Once a set of
guards seeing the entire environment has been established,it
may be desired to continuously sweep the environment with
searchlights so that any evader will be detected in finite time.

The main contribution of this paper is the development of
two asynchronous distributed algorithms to solve the search-
light scheduling problem. Correctness and completion time
bounds for nonconvex polygonal environments are discussed.
The first algorithm, called the DOWSS (Distributed One Way
Sweep Strategy, Section IV-A, is a distributed version of a

known algorithm described originally in [1], but it can be
very slow in clearing the entire environment because only
one searchlight may slew at a time. On-line processing time
required by agents during execution of DOWSS is relatively
low, so that the expedience with which an environment can be
cleared is essentially limited by the maximum angular speed
searchlights may be slewn at. In an effort to reduce the time
to clear the environment, we develop a second algorithm,
called the PTSS (Parallel Tree Sweep Strategy, Section IV-
B), which sweeps searchlights in parallel if guards are
placed in appropriate locations. These locations are related
to an environment partition with certain properties. That we
analyze the time it takes to clear an environment, given a
bound on the angular slewing velocity, is a unique feature
among all papers involving searchlights to date.

We begin with some technical definitions, statement of
assumptions, and brief description of the known centralized
algorithm called the one way sweep strategy (appears, e.g.,
in [1], [2], [4]). We then develop a partially asynchronous
model, a distributed one way sweep strategy, and our new
algorithm the parallel tree sweep strategy. Proofs of all results
and more algorithm details can be found in the report [13].

II. PRELIMINARIES

A. Notation

We begin by introducing some basic notation. We letR,
S

1, andN represent the set of real numbers, the circle, and
natural numbers, respectively. Given two pointsx, y ∈ R

2,
we let [x, y] signify the closed segmentbetweenx and y.
Similarly,]x, y[is theopen segmentbetweenx andy, [x, y[
represents the set]x, y[∪{x} and]x, y] is the set]x, y[∪{y}.
Also, we shall useP to refer to tuples of elements inR2

of the form(p[0], . . . , p[N−1]) (these will be the locations of
the agents), whereN denotes the total number of agents.

We now turn our attention to the environment we are
interested in and to the concepts of visibility. LetE be
a simple polygonal environment, possibly nonconvex. By
simple, we mean thatE does not contain any hole and the
boundary does not intersect itself. Throughout this paper,n
will refer to the number of edges ofE and r the number
of reflex vertices. A pointa ∈ E is visible from b ∈ E if
[a, b] ⊂ E . The visibility set V(p) ⊂ E from a pointp ∈ E
is the set of points inE visible from p. A visibility gap of a
point p with respect to some regionR ⊂ E is defined as any
line segment[a, b] such that]a, b[⊂ int(R), [a, b] ⊂ ∂V(p),
and it is maximal in the sense thata, b ∈ ∂R (intuitively,
visibility gaps block off portions ofR not visible fromp).
The visibility graphGvis of a set of agentsP in environment
E is the undirected graph withP as the set of vertices and
an edge between two agents if and only if they are visible
to each other.

We now introduce some notation specific to the searchlight
problem. An instance of the searchlight problem can be
written as a pair(E , P), where E is an environment and
P is a set of agent locations. For convenience, we will refer
to the searchlight of theith agent ass[i] (which is located
at p[i] ∈ R

2), and S = {s[0], . . . , s[N−1]} will be the set

of all searchlights.θ[i] will also denote the angle of theith
searchlight in radians from the positive horizontal axis. So,
if we say, e.g., aims[i] at pointx, what we really mean is set
θ[i] equal to an angle such that theith searchlight is aimed at
x. Searchlights do not block visibility of other searchlights.

Definition 2.1 (Contamination and clarity):A point x ∈
E is contaminatedif an undetected evader can be located at
x, otherwisex is clear. A region is said to becontaminated
if it contains a contaminated point, otherwise it isclear.

B. Problem description and assumptions

We now introduce the problem of interest. TheDistributed
Searchlight Scheduling Problemis to

Design a distributed algorithm for a network of
autonomous robotic agents in fixed positions, who
will coordinate the slewing of their searchlights so
that any evader in an environment will necessar-
ily be detected in finite time. Furthermore, these
agents are to operate using only information from
local sensing and limited communication.

What is precisely meant by local sensing and limited com-
munication will become clear in later sections. We make the
following main assumptionsabout every searchlight instance
in this paper:

(i) The environment is a simple polygon with finitely
many reflex vertices.

(ii) Every point in the environment is visible from some
agent and there are a finite numberN ∈ N of agents.

(iii) For every connected component ofGvis, there is at least
one agent located on the boundary of the environment.

C. One Way Sweep Strategy (OWSS)

This section describes informally the centralized recursive
One Way Sweep Strategy (OWSS hereinafter) originally
introduced in [1]. The reader is referred to [1] for a detailed
description. Centralized OWSS also appears in [4] and [2].
OWSS is a method for clearing a subregion of a simple 2D
regionE determined by the rays of searchlights. The subre-
gions of interest are the so-calledsemiconvex subregionsof
E supportedby a set of searchlights at a given time and are
defined as follows:

Definition 2.2 (Semiconvex subregion):E is always a
semiconvex subregion ofE supported by∅. Furthermore, any
R ⊂ E is a semiconvex subregion ofE supported by a set
of searchlightsSsup if both of the following hold:

(i) It is enclosed by a segment of∂E and the rays of some
of the searchlights inSsup.

(ii) The interior of R is not visible from any searchlight
in Ssup.

To clear an environmentE , that is a semiconvex subregion
supported by∅, we may begin by selecting an arbitrary
searchlight on the boundary. The first searchlight selected
to clear an environment is called theroot. As the root slews
it blocks off various semiconvex subregions which must be
cleared by the help of other agents. The helpers in turn may

require help clearing various semiconvex subregions, and
helpers of helpers may require help, etc., so that a recursion
tree is produced.

III. A SYNCHRONOUSNETWORK OFAGENTS WITH

SEARCHLIGHTS

In this section we lay down the sensing and communi-
cation model for the agents with searchlights. Each agent is
able to sense the relative position of any point in its visibility
set as well as identify visibility gaps on the boundary of
its visibility set. The agents’ communication graphGcomm

is assumed connected. An agent can slew its searchlight
continuously in any direction and turn it on or off.

Each of theN agents has a unique identifier (UID), say
i, and a portion of memory dedicated to outgoing messages
with contents denoted byM[i]. Agenti can broadcast its UID
together withM[i] to all agents within its communication
region (defined differently in each algorithm). We assume
a bounded time delay,δ > 0, between a broadcast and the
corresponding reception.

Each agent repeatedly performs the following sequence of
actions between any two wake-up instants:

(i) SPEAK, that is, send a BROADCAST repeatedly atδ
intervals, until it starts slewing;

(ii) LISTEN for a time interval at leastδ;
(iii) PROCESS and LISTEN after receiving a valid mes-

sage;
(iv) SLEW to an angle decided during PROCESS.

See Fig. 2 for a schematic illustration of the schedule.

LISTEN

PROCESS SLEW

BROADCAST BROADCAST

Fig. 2. Sequence of actions performed by an agenti in between two wake-
up instants. Note that a BROADCAST is an instantaneous eventtaking place
where there is a vertical pulse, where as the PROCESS, LISTENand SLEW
actions take place over an interval. The SLEW interval may be empty if the
agent does not sweep.

Any agent i performing the SLEW action does so ac-
cording to the discrete-time control systemθ[i](t + ∆t) =
θ[i](t) + u[i], where the control is bounded in magnitude by
umax. The control action depends on time, values of variables
stored in local memory, and the information obtained from
communication and sensing. The subsequent wake-up instant
is the time when the agent stops performing SLEW and is
not predetermined. This network model is identical to that
used for distributed deployment in [11] and [12].

IV. D ISTRIBUTED ALGORITHMS

Here we design distributed algorithms for a network of
agents as described above, where no agent has global knowl-
edge of the environment or locations of all other agents.

A. Distributed One Way Sweep Strategy (DOWSS)

Once one understands OWSS as in Section II-C, espe-
cially its recursive nature, performing one way sweep of
an environment in a distributed fashion is fairly straightfor-
ward. We give here an informal description and supply a
pseudocode in Table I (a more detailed pseudocode can be
found in the companion tech. report [13]). In our discussion
root/parent/child will refer to the relative location of agents
in the simulated one way sweep recursion tree. In this tree,
each node corresponds to a one way slewing action by some
agent. A single agent may correspond to more than one
node, but only one node at a time. To begin DOWSS, some
agent (the root1), sayi, can aim as far clockwise as possible
and then begin slewing until it encounters a visibility gap.
Paused at a visibility gap, agenti broadcasts a call for help to
the network. For convenience, call the semiconvex subregion
which i needs help clearingR. All agents not busy in the
set of supporting searchlightsSsup (indeed at the zeroth level
of recursion only the root is inSsup), who also know they
can see a portion ofint(R) but are not inint(R), volunteer
themselves to helpi. Agent i then chooses a child and the
process continues recursively. In DOWSS as in Tab. I, an
agent needing help always chooses the first child to volunteer,
but some other criteria could be used, e.g., who sees the
largest portion ofR. Whenever a child is finished helping,
i.e., clearing a semiconvex subregion, it reports to its parent
so the parent knows they may continue slewing.

The only subtle part of DOWSS is getting agents to recog-
nize, without global knowledge of the environment, that they
see the interior of a particular semiconvex subregion which
some potential parent needs help clearing. More precisely,
suppose some agentl must decide whether to respond as
a volunteer to agenti’s help request to clear a semiconvex
subregionR. Agent l must calculate if it actually satisfies
p[l] /∈ int(R) andint(R)∩V(p[l]) 6= ∅. This is accomplished
by agenti sending along with its help request an oriented
polyline ψ (in SPEAK section of Tab. I). By an oriented
polyline we mean thatψ consists of a set of points listed
according to some orientation convention, e.g., so that if one
were to walk along the points in the order listed, then the
interior of R would always be to the right. The polyline
encodes the portion of∂R which is not part of∂E and the
orientation encodes which side ofψ is the interior ofR.
Notice that for this to work, all agents must have a common
reference frame. Whenever the root broadcasts a polyline,
it is just a line segment, but as recursion becomes deeper,
an agent needing help may have to calculate a polyline
consisting of a portion of its own beam and its parent’s
polyline. The polyline may even close on itself and create a
convex polygon. Examples of these scenarios are illustrated
in Fig 3. We conclude our description of DOWSS with the
following theorem.

Theorem 4.1 (Correctness of DOWSS):Given a simple
polygonal environmentE and agent positionsP =

1The root could be chosen by any leader election scheme, e.g., a
predetermined or lowest UID.

(p[0], . . . , p[N−1]), let the following conditions hold:
(i) the standing assumptions are satisfied;

(ii) all agentsi ∈ {0, . . . , N−1} have a common reference
frame;

(iii) p[0] ∈ ∂E ;
(iv) the agents operate under DOWSS.

ThenE is cleared in finite time.

(a)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(b)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(c)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(d)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

Fig. 3. An example execution of DOWSS. The configuration in (a) results
from s

[0] clearing the very top of the region with help ofs
[2], s

[3], and
s
[4] followed by s

[1] attempting to clear the semiconvex subregion below
wheres

[0] is aimed. Whens[1] gets stuck, it requests help by broadcasting
the thick black polyline in (a), in this case just a line segment. s

[2] then
helpss

[1] but gets stuck right off, so it broadcasts the thick black polyline
shown in (b). Nexts[3] helpss

[2] but gets stuck and broadcast the polyline
in (c). Similarly s

[4] broadcasts the polyline in (d), in this case a convex
polygon, which onlys[5] can clear. In general, information passed between
agents during any execution of DOWSS will be in the form of either an
oriented line segment (a), a general oriented polyline (b andc), or a convex
polygon (d).

We now give an upper bound on the time it takes DOWSS
to clear the environment assuming the searchlights slew at
some constant angular velocityω, and that communication
and processing time are negligible.

Lemma 4.2 (DOWSS Time to Clear Environment):
Let agents in a network executing DOWSS slew their
searchlights with angular speedω. Then the time required
to clear an environment withr reflex vertices is no greater
than 2π

ω
1−rN

1−r
.

It is not known whether this bound is tight, but at least
examples as in Fig. 4 can be constructed where DOWSS and
OWSS run inO(r2) (⇒ O(n2)) time if guards are chosen
malevolently. A key point is that DOWSS and OWSS do not
specify (i) how to place guards given an environment, or (ii)
how to optimally choose guards at each step given a set of
guards. These are interesting unsolved problems in their own
right which we do not explore in this paper.

Another performance measure of a distributed algorithm
is the size of the messages which must be communicated.

Lemma 4.3 (DOWSS Message Size):If the environment
hasn sides andr reflex vertices, the polyline (passed as a

s[0]
s[1]
s[2]

s[3]

Fig. 4. An example from a class of searchlight instances for which
malevolent guard choice (consecutive order of UIDs) in OWSS orDOWSS
implies time to clear the environment isO(r2) (and thereforeO(n2)).

TABLE I

ASYNCHRONOUSSCHEDULE FORDOWSS (CF FIG. 2, 3)

Name: DOWSS
Goal: Agents in the network coordinate their search-

light slewing to clear an environmentE .
Assumes: Agents are stationary and have a completely

connected communication topology with no
packet loss. Sweeping is initialized by a root.

For time t > 0, each agent executes the following actions
between any two wake-up instants according to the schedule in
Section III:

SPEAK
Broadcast either

(i) a request for help,
(ii) a message to engage a child, or
(iii) a signal of task completion to a parent.

LISTEN
Listen for either

(i) a help request from a potential parent,
(ii) volunteers to help,
(iii) engagement by parent, or
(iv) current child reporting completion.

PROCESS
(i) Use oriented polyline from potential parent with informa-

tion from sensing to check if able to help, or
(ii) if engaged, compute wayangles, visibility gaps and ori-

ented polylines.

SLEW
(i) Aim at start wayangle and switch searchlight on,

(ii) slew to next wayangle, or
(iii) slew to finish wayangle and switch searchlight off.

message between agents during DOWSS) consists of a list of
no more thanr+1 points inR

2. Furthermore, sincer ≤ n−3,
the list consists of no more thann− 2 points inR

2.
That DOWSS allows flexibility in guard positions (only

standing assumptions required) may be an advantage if
agents are immobile. However, DOWSS only allowing one
searchlight slewn at a time is a clear disadvantage when time
to clear the environment is to be minimized. This lead us to
design the algorithm in the next section.

B. Positioning Guards for Parallel Sweeping

The DOWSS algorithm in the previous section is a
distributed message-passing and local sensing scheme to

perform scheduling givena priori the location of the search-
lights. Given an arbitrary positioning, time to completion
of DOWSS can be large; see Lemma 4.2 and Fig. 4. The
algorithm we design in this section, called the Parallel Tree
Sweep Strategy (PTSS), provides a way of choosing search-
light locations and a corresponding schedule to achieve faster
clearing times. PTSS works roughly like this: According to
some technical criteria described below, the environment is
partitioned into regions called cells with one agent located in
each cell. Additionally, the network possesses a distributed
representation of a rooted tree. By distributed representation
we mean that every agent knows who its parent and children
are. Using the tree, agents slew their searchlights in a way
that expands the clear region from the root out to the
leaves, thus clearing the entire environment. Since agents
may operate in parallel, time to clear the environment is
linear in the height of the tree and thusO(n). Guaranteed
linear time to completion is a clear advantage over DOWSS
which can be quadratic or worse (see Lemma 4.2 and Fig. 4).
Before describing PTSS more precisely, we need a few
definitions.

Definition 4.4: (i) A setS ⊂ R
2 is star-shapedif there

exists a pointp ∈ S with the property that all points
in S are visible fromp. The set of all such points of
a given star-shaped setS is called thekernelof S and
is denoted byker(S).

(ii) Given a compact subsetE of R
2, a partition of

E is a collection of sets{P [0], . . . ,P [N−1]} such
that ∪N−1

i=0 P [i] = E whereP [i]’s are compact, sim-
ply connected subsets ofE with disjoint interiors.
{P [0], . . . ,P [N−1]} will be calledcellsof the partition.

For our purposes agap (which visibility gap is a special
case of) will refer to any segment[q, q′] with q, q′ ∈ ∂E and
]q, q′[⊂ E̊ . The cells of the partitions we consider will be
separated by gaps.

Definition 4.5 (PTSS partition):Given a simple polygo-
nal environmentE , a partition{P [0], . . . ,P [N−1]} is aPTSS
partition if the following conditions are true:

(i) P [i] is a star-shaped cell for alli ∈ {0, . . . , N − 1};
(ii) the dual graph2 of the partition is a tree;
(iii) a root, sayP [0], of the dual graph may be chosen so

that ker(P [0]) ∩ ∂E 6= ∅, and for any node other than
the root, sayP [k] with parentP [j], we have that(P [j]∩
P [k]) ∩ ker(P [k]) ∩ ∂E 6= ∅.

Definition 4.6: Given a PTSS partition
{P [0], . . . ,P [N−1]} of E and a root cell P [0] of the
partition’s dual graph satisfying the properties discussed
in Definition 4.5, the corresponding (rooted)PTSS treeis
defined as follows:

(i) the node set(p[0], . . . , p[N−1]) is such thatp[0] ∈
ker(P [0]) ∩ ∂E and for k > 0, p[k] ∈ (P [j] ∩ P [k]) ∩
ker(P [k])∩∂E , whereP [j] is the parent ofP [k] in the
dual graph of the partition;

2The dual graph of a partition is the graph with cells corresponding to
nodes, and there is an edge between nodes if the corresponding cells share
a curve of nonzero length.

(ii) there exists an edge(p[j], p[k]) if and only if there
exists an edge(P [j],P [k]) in the dual graph.

We now describe two examples of PTSS partitions seen
in Fig. 5. The left configuration in Fig. 5 results from
what we call a Reflex Vertex Straddling (RVS hereinafter)
deployment. RVS deployment begins with all agents located
at the root followed by one agent moving to the furthest end
of each of the root’s visibility gaps, thus becoming children
of the root. Likewise, further agents are deployed from each
child to take positions on the furthest end of the children’s
visibility gaps located across the gaps dividing the parent
from the children. In this way, the root’s cell in the PTSS
partition is just its visibility set, but the cells of all successive
agents consist of the portion of the agents’ visibility sets
lying across the gaps dividing their cells from their respective
parents’ cells. It is easy to see that in final positions resulting
from an RVS deployment, agents see the entire environment.

Lemma 4.7:RVS deployment requires, in general, no
more thanr+1 ≤ n−2 agents to see the entire environment
from their final positions. In an orthogonal environment, no
more thann

2 − 2 agents are required.
See Fig. 1 for simulation results of PTSS executed by

agents in an RVS configuration. The right configuration in
Fig. 5 results from the deployment described in [12] in
which an orthogonal environment is partitioned into convex
quadrilaterals.

Lemma 4.8:The deployment described in [12] requires
no more thann

2 − 2 agents to see the entire (orthogonal)
environment from their final positions.

Both the PTSS configurations in these examples may be
generated via distributed deployment algorithms in which
agents perform a depth-first, breadth-first, or randomized
search on the PTSS tree constructed on-line. Please refer to
[11] and [12] for a detailed description of these algorithms.

Fig. 5. Left are agent positions resulting from a Reflex Vertex Straddling
(RVS) deployment. Right are agent positions resulting from the deployment
described in [12] in which an orthogonal environment is partitioned into
convex quadrilaterals. The PTSS partitions are shown by coloring the cells
alternating grey and white (caution: grey does not depict clarity here). Dotted
lines show edges of the PTSS tree where the circled agent is the root.

We now turn our attention to the pseudocode in Tab. II
(a more detailed pseudocode can be found in the companion
tech. report [13]) and describe PTSS more precisely. Suppose
some agents are positioned in an environment according to
a PTSS partition and rooted tree. PTSS begins by the root
pointing its searchlight along a wall and then slewing away
from the wall, sweeping over its cell, pausing whenever it

encounters a gap. At a gap, the root and its child at that gap
execute the protocol described in Fig. 6 in order to expand
the clear region across the gap. The root’s children do the
same with their children, and so on. In this way, the clear
region expands from the root to the leaves at which time
the entire environment has been cleared. We arrive at the
following lemma and correctness result.

Lemma 4.9 (Expanding a Clear Region Across a Gap):
Suppose an environment is endowed with a PTSS partition
and tree, and that agenti is a parent of agentj (see Fig. 6).
Then a clear region may always be expanded across the gap
from P [i] to P [j] by s[j] first aiming across the gap and
waiting for s[i] to slew over the gap. Both agents may then
continue clearing the remainder of their respective cells
concurrently.

s[i]

s[j]

v

v′

Fig. 6. Expanding a clear region (grey) across a gap (thick dashed segment
[v, v’]) from cell P [i] to cellP [j] may always be accomplished by the child
(s[j]) aiming across the gap and waiting for the parent (s

[i]) to slew over
the gap. Both agents may then continue clearing the remainder of their
respective cells.

Theorem 4.10 (Correctness of PTSS):Given a
simple polygonal environmentE and agent positions
P = (p[0], . . . , p[N−1]), let the following conditions hold:

(i) the standing assumptions are satisfied;
(ii) all agentsi ∈ {0, . . . , N−1} are positioned in a PTSS

partition and rooted tree with agent1 as the root;
(iii) the agents operate under PTSS.

ThenE is cleared in finite time.
Since multiple branches of the PTSS tree may be cleared

concurrently, and using Lemmas 4.7 and 4.8, we have the
next lemma (assuming processing and communication time
are negligible, cf. Lemma 4.2).

Lemma 4.11 (PTSS Time to Clear Environment):Let the
agents in a network executing PTSS slew their searchlights
with angular speedω. Then time required to clear an envi-
ronment is

(i) linear in the height of the PTSS tree;
(ii) no greater than2π

ω
(r + 1) ≤ 2π

ω
(n − 2) if agents are

in final positions according to an RVS deployment;
(iii) no greater thanπ

ω
(n − 2) if agents are in final posi-

tions in an orthogonal polygon according to an RVS
deployment or the deployment described in [12].

Looking at the SPEAK section of Tab. II, it is easy to see
that message size is constant (cf. Lemma 4.3).

Lemma 4.12 (PTSS Message Size):Messages passed be-
tween agents executing PTSS have constant size.

Requiring guards to be situated in a PTSS tree is more
restrictive than the mere standing assumptions required by
DOWSS, but the time savings using PTSS over DOWSS
can be considerable. Despite our two example schemes to

TABLE II

ASYNCHRONOUSSCHEDULE FORPTSS (CF FIG. 2, 6, 5)

Name: PTSS
Goal: Agents in the network coordinate their search-

light slewing to clear an environmentE .
Assumes: Agents are statically positioned as nodes in

a PTSS partition and tree, and each knows a
priori the gaps of its cell and UIDs of the
corresponding children and parent. Sweeping
is initialized by the root.

For time t > 0, each agent executes the following actions
between any two wake-up instants according to the schedule in
Section III:

SPEAK
Broadcast either

(i) a command for a child to aim across a gap,
(ii) a confirmation to a parent when aimed across gap, or
(iii) when finished slewing over a gap, a signal of completion

to the child.

LISTEN
Listen for either

(i) instruction from a parent to aim across a gap,
(ii) confirmation from a child aimed across a gap, or
(iii) confirmation that parent has passed the gap.

PROCESS
When first engaged, compute wayangles where coordination
with children will be necessary.

SLEW
(i) Aim at start wayangle and switch searchlight on,

(ii) slew to next wayangle, or
(iii) slew to finish wayangle and switch searchlight off.

construct a PTSS tree, it is not clear how to construct one
which clears an environment in minimum time among all
possible PTSS trees. It is also not clear how to optimally
choose the root of the tree (point of deployment). However,
if the environment layout is known a priori and one may
choose the root location, then an exhaustive strategy may be
adopted whereby all possible root choices are compared.

V. CONCLUSIONS

In this paper we have provided two solutions to the
distributed searchlight scheduling problem. DOWSS requires
that the guards satisfy the standing assumptions, has message
sizeO(n), and sometimes requires timeO(r2) to clear an
environment. PTSS requires that the agents be positioned
according to a PTSS tree, has constant message size, and
requires time linear in the height of the PTSS tree. We
have given two procedures for constructing PTSS trees, one
requiring no more thanr ≤ n − 3 guards for a general
polygonal environment, and two requiring no more thann−2

2
guards for an orthogonal environment. Guards slew through
a total angle no greater than2π, so the upper bounds on the
time for PTSS to clear an environment with these partitions
are 2π

ω
r ≤ 2π

ω
(n − 3) and π

ω
(n − 2), respectively. Because

PTSS allows searchlights to slew concurrently, it generally

clears an environment much faster than DOWSS. However,
a direct comparison is not appropriate since DOWSS does
not specify how to choose guards whereas PTSS does.

REFERENCES

[1] K. Sugihara, I. Suzuki, and M. Yamashita, “The searchlight scheduling
problem,”SIAM Journal on Computing, vol. 19, no. 6, pp. 1024–1040,
1990.

[2] M. Yamashita, I. Suzuki, and T. Kameda, “Searching a polygonal
region by a group of stationaryk-searchers,”Information Processing
Letters, vol. 92, no. 1, pp. 1–8, 2004.

[3] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-basedpursuit-
evasion with limited field of view,”International Journal of Robotics
Research, vol. 25, no. 4, pp. 299–315, 2006.

[4] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda, “Searching for
mobile intruders in a polygonal region by a group of mobile searchers,”
Algorithmica, vol. 31, no. 2, pp. 208–236, 2001.

[5] B. Simov, G. Slutzki, and S. M. LaValle, “Pursuit-evasionusing beam
detection,” in IEEE Int. Conf. on Robotics and Automation, (San
Francisco, CA), pp. 1657–1662, Apr. 2000.

[6] J. H. Lee, S. M. Park, and K. Y. Chwa, “Simple algorithms for
searching a polygon with flashlights,”Information Processing Letters,
vol. 81, no. 5, pp. 265–270, 2002.

[7] J. Urrutia, “Art gallery and illumination problems,” inHandbook of
Computational Geometry(J. R. Sack and J. Urrutia, eds.), pp. 973–
1027, North-Holland, 2000.

[8] J. O’Rourke,Art Gallery Theorems and Algorithms. Oxford University
Press, 1987.

[9] T. C. Shermer, “Recent results in art galleries,”Proceedings of the
IEEE, vol. 80, no. 9, pp. 1384–1399, 1992.

[10] U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy
task-specific and floor plan-specific coverage requirements,” Computer
Vision and Image Understanding, vol. 103, no. 3, pp. 156–169, 2006.

[11] A. Ganguli, J. Cort́es, and F. Bullo, “Distributed deployment of
asynchronous guards in art galleries,” inAmerican Control Conference,
(Minneapolis, MN), pp. 1416–1421, June 2006.

[12] A. Ganguli, J. Cort́es, and F. Bullo, “Visibility-based multi-agent
deployment in orthogonal environments,” inAmerican Control Con-
ference, (New York), pp. 3426–3431, July 2007.

[13] K. J. Obermeyer, A. Ganguli, and F. Bullo, “Asynchronous
distributed searchlight scheduling,” Jan. 2007. Available at
http://arxiv.org/abs/cs/0701077.

