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This article considers a path planning problem for a single fixed-wing aircraft performing
a reconnaissance mission using EO (Electro-Optical) camera(s). A mathematical formu-
lation of the general aircraft visual reconnaissance problem for static ground targets in
terrain is given and it is shown, under simplifying assumptions, that it can be reduced to
what we call the PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem), a varia-
tion of the famous TSP (Traveling Salesman Problem). Two algorithms are developed to
solve the PVDTSP. They fall into the class of algorithms known as sampling-based roadmap
methods because they operate by sampling a finite set of points from a continuous state
space in order to reduce a continuous motion planning problem to planning on a finite
discrete graph. The first method is resolution complete, which means it provably converges
to a nonisolated global optimum as the number of samples grows. The second method
achieves slightly shorter computation times by using approximate dynamic programming,
but consequently is only guaranteed to converge to a nonisolated global optimum mod-
ulo target order. Numerical experiments indicate that, for up to about 20 targets, both
methods deliver good solutions suitably quickly for online purposes. Additionally, both al-
gorithms allow trade-off of computation time for solution quality and are shown extensible
to handle wind, airspace constraints, any vehicle dynamics, and open-path (vs. closed-tour)
problems.

I. Introduction

UAVs (Unmanned Air Vehicles) are increasingly being used for both civilian and military applications
such as environmental monitoring, geological survey, surveillance, reconnaissance, and search and rescue.1,2

Good control and planning algorithms are a key component of UAV technology because they can increase
operational capabilities while reducing risk, costs, and operator workloads. In this article we present novel
path planning algorithms for a single fixed-wing aircraft performing a reconnaissance mission using EO
(Electro-Optical) camera(s). Given a set of stationary ground targets in a terrain (natural, urban, or mixed),
the objective is to compute a path for the reconnaissance aircraft so that it can photograph all targets in
minimum time. That the targets are situated in terrain plays a significant role because terrain features can
occlude visibility. As a result, in order for a target to be photographed, the aircraft must be located where
both (1) the target is in close enough range to satisfy the photograph’s resolution requirements, and (2) the
line-of-sight between the aircraft and the target is not blocked by terrain. For a given target, we call the set
of all such aircraft positions the target’s visibility region. An example visibility region is illustrated in Fig. 1.
In full generality, the aircraft path planning can be complicated by wind, airspace constraints (e.g. due to
enemy threats or collision avoidance), aircraft dynamic constraints, and the aircraft body itself occluding
visibility. However, under simplifying assumptions, if we model the aircraft as a Dubins vehiclea, approximate
the targets’ visibility regions by polygons, and let the path be a closed tour, then the reconnaissance path
planning problem can be reduced to the following.

For a Dubins vehicle, find a shortest planar closed tour which visits at least one point in each of
a set of polygons.

∗This version: August 2010
†PhD student, Center for Control, Dynamical Systems, and Computation; karl@engr.ucsb.edu. Student Member AIAA.
‡PhD student, Department of Mechanical Engineering; paul.v.oberlin@gmail.com
§Professor, Department of Mechanical Engineering; dswaroop@tamu.edu
aA Dubins vehicle is one which moves only forward and has a minimum turning radius.3,4
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Figure 1. Top is shown an example target, a ground vehicle parked next to a building in urban terrain. The set of
all points which are close enough to the target to satisfy photograph resolution requirements is a solid sphere (bottom
left). The green two-dimensional region in the sky (bottom right) shows the subset of the sphere, at a reconnaissance
aircraft’s altitude h, where target visibility is not occluded by terrain. Assuming the aircraft body itself doesn’t occlude
visibility, then flying the aircraft through the green region is sufficient for the target to be photographed, hence we call
it the target’s visibility region for fixed aircraft altitude h.

We refer to this henceforth as the PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem) since it
is a variation of the famous TSP (Traveling Salesman Problem).b A graphical illustration of the PVDTSP
is shown in Fig. 2.

To our knowledge the PVDTSP has not previously been studied aside from Ref. 6 where we designed
a genetic algorithm. Athough the genetic algorithm performed well in a Monte-Carlo numerical study,
there unforntunately are no proven performance guarantees. Because the PVDTSP has embedded in it
the combinatorial problem of choosing the order to visit the polygons, the solution space is very large
and discontinuous. This precludes direct application of numerical optimal control techniques traditionally
used in trajectory optimization, surveyed, e.g., in Ref. 7. However, several related variations of the TSP
are of interest. The ETSP (Euclidean TSP) is a TSP where the vertices of the graph are points in the
Euclidean plane R

2 and the edges are weighted with Euclidean distances. In the ETSPN (Euclidean TSP
with Neighborhoods) one seeks a shortest closed Euclidean path passing through n subsets of the plane. The
ETSP is NP-hard8 and so is the ETSPN by virtue of being a generalization of the ETSP. The DTSP (Dubins
TSP), where a Dubins vehicle must follow a shortest tour through n single point targets in the plane, is
known to be NP-hard in n.9 Various heuristics for both single and multi-vehicle versions of the DTSP can
be found, e.g., in Ref. 10, 11, and 12. The PVDTSP reduces to the ETSPN in the limit as the vehicle’s
minimum turning radius becomes small compared to the distances between polygons. Similarly, as the area
of the polygons goes to zero, the PVDTSP reduces to the DTSP, hence the PVDTSP is NP-hard. There

bThe TSP, one of the most famous NP-hard problems of combinatorial optimization, is to find a minimum cost tour (cyclic
path) through a weighted graph such that every vertex is visited exactly once. If the graph is directed, it is called the ATSP
(Asymmetric TSP). See, e.g., Ref.5
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Figure 2. Example problem instance and candidate solution path for the PVDTSP (Polygon-Visiting Dubins Traveling

Salesman Problem). In order to photograph all targets, the aircraft must fly through at least one point in each target’s
visibility region (green), cf. Fig. 1.

exist a number of algorithms with approximation guarantees for both the DTSP13–15 and ETSPN,16–18 but
it appears that extending any of these algorithms to the PVDTSP would put undesirable restrictions on
the problem instances which could be handled, e.g., the polygons would not be allowed to overlap. The
FOTSP (Finite One-in-set TSP)c is the problem of finding a closed path of minimum cost which passes
through at least one vertex in each of a finite collection of clusters, the clusters being mutually exclusive
finite vertex sets. The FOTSP is NP-hard because it has as a special case the ATSP (Asymmetric TSP).5

An FOTSP instance can be solved exactly by transforming it into an ATSP instance using the Noon-Bean
transformation from Ref. 19, then invoking an ATSP solver. Alternatively, an FOTSP can be solved using an
approximate dynamic programming technique as in Ref. 20. In the robotics literature,21,22 a sampling-based
roadmap methodd refers to any algorithm which operates by sampling a finite set of points from a continuous
state space in order to reduce a continuous motion planning problem to planning on a finite discrete graph.
Sampling-based roadmap methods have traditionally only been used for collision-free point-to-point path
planning amongst obstacles, however, in Ref. 23 approximate solutions to the DTSP are found by sampling
discrete sets of orientations that the Dubins vehicle can have over each target, essentially approximating a
DTSP instance by an FOTSP instance. The Noon-Bean transformation is then used to convert the FOTSP
instance into an ATSP instance so that a standard ATSP solver can be applied. Discretization of the vehicle
state space in order to approximate the original problem by an FOTSP is a key idea which we build upon
in designing sampling-based roadmap methods for the PVDTSP in the present work.

There are three main contributions in this article. First, we precisely formulate the general aircraft visual
reconnaissance problem for static ground targets in terrain. Under simplifying assumptions, we reduce our
general formulation to the PVDTSP. Although the PVDTSP reduces to the well-studied DTSP and ETSP in
the sparse limit as targets are very far apart and minimum turning radius is small, we provide a worst-case
analysis demonstrating the importance of developing specialized algorithms for the PVDTSP in the dense
limit as targets are close together and polygons may overlap significantly. An early version of the PVDTSP
formulation appeared in our previous work Ref. 6, but that did not include the worst-case analysis. Our
second contribution is the design and numerical study of two sampling-based roadmap methods for the
PVDTSP. These methods operate by sampling finite discrete sets of vehicle states to approximate a PVDTSP
instance by an FOTSP instance, then applying existing FOTSP solving techniques. One of our sampling-

cWhat we have chosen to call the FOTSP is known variously in the literature as “Group-TSP”, “Generalized-TSP”, “One-
of-a-Set TSP”, “Errand Scheduling Problem”, “Multiple Choice TSP”, “Covering Salesman Problem”, or “International TSP”.

dIn this usage, “method” means a high level algorithm having multiple components, each of which may be considered an
algorithm in its own right.
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based roadmap methods uses the Noon-Bean transformation from Ref. 19 and is resolution complete, which
means it provably converges to a nonisolated global optimum as the number of samples grows. Our other
sampling-based roadmap method achieves faster computation times by using the approximate dynamic
programming technique from Ref. 20, but consequently only converges to a nonisolated global optimum
modulo target order. While we have borrowed the idea of approximation by an FOTSP from Ref. 23, the
present work goes beyond a simple extension in that we (1) illustrate the connection with sampling-based
roadmap methods used for path planning in the robotics literaturee, (2) use a novel sampling technique to
reduce computational time complexity, and (3) provide proof of convergence to nonisolated global optima.
Numerical experiments indicate that both sampling-based roadmap methods deliver good solutions suitably
quickly for online purposes when applied to PVDTSP instances having up to about 20 targets. For problem
instances with greater than 5 targets the sampling-based roadmap methods significantly outperformed the
genetic algorithm in Ref. 6. Additionally, both methods have a means for a user to trade off computation
time for solution quality. Our third contribution is to describe how the modular nature of both the algorithms
allows them to easily be extended to handle wind, airspace constraints, any vehicle dynamics, and open-path
(vs. closed-tour) problems.

This article is organized as follows. In Sec. II we introduce notation, mathematically formulate the
minimum time reconnaissance aircraft path planning problem, show how to reduce the problem to a PVDTSP,
and provide the worst-case analysis motivating the development of specialized PVDTSP algorithms. In
Sec. III we present, analyze, and numerically validate the sampling-based roadmap methods. Finally, we
describe how our algorithms can be extended in Sec. IV and conclude in Section V.

II. Mathematical Formulation

We begin with some preliminary notation. The s-dimensional Euclidean space is R
s and S is the circle

parameterized by angle radians ranging from 0 to 2π, 0 and 2π identified. Let T = {T1, T2, . . . , Tn} be the
set of n targets which must be photographed by our aircraft. Given a set A, we denote its cardinality by
|A|, its interior by A◦, and its power set, i.e., the set of all subsets of A, by 2A. Given two sets A and B,
A×B is the Cartesian product of these sets. The complete state of our reconnaissance aircraft is encoded in
a vector x, which takes a value in the aircraft’s state space X. We can segregate x into internal and external
states so that

x =

[

xinternal

xexternal

]

∈ X = Xinternal ×Xexternal. (1)

The internal state xinternal accounts for control surface states, and more importantly, if the aircraft has
gimbaled camera(s), then also for the camera state(s). The external state xexternal accounts for the aircraft
body position and velocity in the full six degrees of freedom.

We now define a map V : T → 2X from the set of targets to subsets of the aircraft state space. Under
this map, V(Ti) ⊂ X, called the ith target’s visibility region, is precisely the set of all aircraft states such
that Ti can be photographed whenever the aircraft is in that state. Later, in Sec. II.A, we discuss how to
calculate visibility regions from a terrain model, but let us assume for now we can make this calculation.
We also assume a BVP (Boundary Value Problem) solver is available which calculates the minimum time
aircraft trajectory between any two states x and x′, provided a trajectory exists. We treat this minimum
time between states as a “black box” distance function denoted by d(x,x′). Now our minimum-time

reconnaissance path planning problem can be stated as

Minimize : C(x1, . . . ,xn) =
∑n−1

i=1 d(xi,xi+1) + d(xn,x1)

Subject To : for each i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n}

such that xj ∈ V(Ti),

(2)

where the decision variables are the states xi (i = 1, . . . , n). Once an optimal sequence of states (x1, . . . ,xn)
has been chosen, then the minimum time state-to-state trajectory planner can be used to connect each pair
of consecutive states, thus we obtain a minimum time closed reconnaissance tour. Since the complete state

eAlthough Ref. 23 appears to be the first application of a sampling-based roadmap method to a TSP-type problem, they do
not use the term “sampling-based roadmap method”, nor is there any mention of the connection with sampling-based roadmap
methods in the robotics literature.
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space of an aircraft can be very complicated, we simplify the discussion by making the following main

assumptions.

(i) The aircraft is modeled as a Dubins vehicle with minimum turning radius rmin, fixed altitude h, and
constant airspeed Va.
Comments: Common for small low-power UAVs.

(ii) Regardless of state, the aircraft body never occludes visibility between the camera and a target.
Comments: Holds when either there are multiple cameras covering all angles from the aircraft, or there
is a sufficiently flexible gimbaled camera with dynamics faster than the aircraft body dynamics.f

(iii) There are no airspace constraints nor wind.
Comments: As to be discussed in Sec. IV, our results can easily be extended to handle wind and no-fly
zones.

In accordance with assumption (i), the aircraft dynamics take the form






ẋ

ẏ

ψ̇




 =






Va sin(ψ)

Va cos(ψ)

u




 , (3)

where (x, y) ∈ R
2 are earth-fixed Cartesian coordinates, ψ ∈ S is the azimuth angle, and u is the input to

an autopilot system. Assumption (ii) tells us that a target can be photographed independent of aircraft
azimuth ψ, therefore we can abstract out xinternal so that the aircraft state space is reduced to

x = (x, y, ψ) ∈ X = R
2 × S = SE(2), (4)

and the Visibility sets V(T1), . . . ,V(Tn) are reduced to 2-dimensional regions in R
2 as shown in Fig. 1 and 2

(as opposed to subsets of X = R
2 ×S). Hereinafter we refer to the state of a Dubins vehicle interchangeably

as “state” or “pose” (position with orientation). The minimum time path between two Dubins states x

and x′ can be computed very quickly in constant time.3,24 This provides us with our “black box” distance
function d(x,x′) as it appears in the optimization problem Eq. 2. Although visibility regions may contain
circular arcs due to the camera range constraint, they can be well approximated by polygons. We have now
reduced our minimum time reconnaissance path planning problem to a PVDTSP.

In some UAV systems in the field today, target visibility sets are neglected and reconnaissance paths are
planned by simply solving the DTSP over the target positions, i.e., the UAV is restricted to pass directly
over each target in order to photograph it. However the worst-case analysis in the following Theorem II.1
demonstrates that an arbitrarily large relative cost increase can be incurred by solving the DTSP instead
of the PVDTSP. This cost increase is most pronounced in the dense limit (left in Fig. 3) as targets become
very close together, which motivates our development of specialized PVDTSP algorithms for tight urban
scenarios especially. In contrast, in the sparse limit (right in Fig. 3) when the minimum turning radius and
visibility set diameters are much smaller than the distances between targets, there is no significant advantage
to solving the PVDTSP over the DTSP nor over the ETSP.

Theorem II.1 (DTSP vs. PVDTSP Worst-Case Analysis). In a fixed compact subset of the plane R
2,

solving the DTSP over point targets instead of the PVDTSP over those same targets’ visibility sets may
incur a cost penalty of order Ω(n) in the worst case.g

Proof. The set of all DTSP tours through n point targets is a subset of all PVDTSP tours through those same
targets’ visibility sets, therefore the length of a tour that results from solving the PVDTSP to optimality
can be no greater than that of solving the DTSP. Now it suffices to prove the theorem by demonstrating a
class of visual reconnaissance problem instances, parameterized by the number of targets n, for which the
tour cost when solved as a DTSP is order Ω(n) (lower bounded) yet only order O(1) (upper bounded) when
solved as a PVDTSP. One such class of instances is illustrated left in Fig. 3.h Given any n noncolinear point
targets in the plane, we can linearly scale them until the radius of the circle constructed from any three of

fAn omnidirectional camera is another possibility, but they typically have poor resolution.
gA function f(n) is said to be Ω(n) if there exist positive constants c and n0 such that f(n) ≥ cn for all n ≥ n0.
hSuch a class of instances has been used previously in Ref. 14 to show DTSP tours in general have worst-case length Ω(n).
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them has radius smaller than the Dubins vehicle minimum turn radius. This scaling ensures that, in order
to fly a feasible DTSP tour, the aircraft must travel a distance at least the length of one minimum turn
radius circle for every two targets. Solving the DTSP over these points would thus cost Ω(n), yet letting the
intersection of the targets visibility sets’ contain all the targets, the PVDTSP could be solved with a single
minimum turn radius loop and thus cost only O(1).

Figure 3. In the dense limit (left) as the distances between targets are much smaller than the minimum turning radius,
there can be a large penalty incurred (Ω(n), see Theorem II.1 and proof) by solving the DTSP instead of the PVDTSP.
In particular, if the densely packed targets are sufficiently noncolinear, an aircraft solving the PVDTSP can photograph
all targets in a single pass (shown as blue circle), but an aircraft solving the DTSP would only be able to photograph
two targets per pass, thus requiring a tour at least the length of n

2
minimum turn radius circles. In the sparse limit

(right) when the minimum turning radius and visibility set diameters are much smaller than the distances between
targets, there is no significant advantage to solving the PVDTSP over the DTSP nor over the ETSP.

II.A. Calculating Visibility Regions

In order to calculate the visibility region V(Ti) of a target, it is necessary to know the target location and
to have a computer model/representation of the terrain. This representation may be either a vector format,
e.g., a TIN (Triangulated Irregular Network), or a raster format, e.g., a DEM (Digital Elevation Map) such
as the military’s DTED (Digital Terrain Elevation Data). The necessary data to build a terrain model
could be gathered, e.g., by LIDAR (LIght Detection And Ranging), SAR (Synthetic Aperture Radar), or
photogrammetry. Once the terrain model has been built, the visibility region of a target may be calculated
using a “sweeping algorithm”25–27 in the vector case, or Bresenham’s line algorithm28 in the raster case.

III. Sampling-Based Roadmap Methods

In this section we present two sampling-based roadmap methods for the PVDTSP. These methods operate
by sampling a finite discrete set of poses from the continuous Dubins state space in order to approximate the
PVDTSP instance by an FOTSP instance, then applying an FOTSP algorithm. We call the approximating
FOTSP instance a PVDTSP roadmap. In Sec. III.A we explain in detail how to construct a PVDTSP
roadmap. The methods that use the roadmap are then described in Sec. III.B and III.C. We provide a
numerical study in Sec. III.D and in Sec. III.E describe the relationship between the sampling-based roadmap
methods in the present work and those used in the robotics literature for collision-free path planning. Later
in Sec. IV we explain how our methods can be extended to handle wind, airspace constraints, any vehicle
dynamics, and open-path problems.

III.A. Roadmap Construction

To define a PVDTSP roadmap we first need definitions of the ATSP (Asymmetric TSP) and FOTSP (Finite
One-in-a-set TSP) which are more precise than those given in Sec. I.
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Definition III.1 (ATSP). Given a weighted directed graph G = (V,E) where V is a finite set of vertices

{v1, v2, v3, . . . , vnV
}

and E a set of directed edges with weights

{wi,j |i, j ∈ {1, 2, 3, . . . , nV } and i 6= j},

the Asymmetric TSP (ATSP) is to find a directed cycle of minimum cost which visits every vertex in V

exactly once.

Definition III.2 (FOTSP). Suppose we have a weighted directed graph G = (V,E) as in Def. III.1, but
now the vertices are partitioned into finitely many nonempty mutually exclusive vertex sets called clusters
S = {S1, S2, S3, . . . , SnS

}, so that the vertices can be written as

V =
{

v(1,1), v(1,2), v(1,3), . . . , v(1,nS1
), v(2,1), v(2,2), v(2,3), . . . , v(2,nS2

), . . .

. . . , v(nS ,1), v(nS ,2), v(ns,3), . . . , v(nS ,nSnS
)

}

.
(5)

Then the Finite One-in-a-set TSP (FOTSP) is to Find a directed cycle of minimum cost which visits at least
one vertex from each cluster.

Definition III.3 (PVDTSP Roadmap). A roadmap for a PVDTSP instance is an FOTSP instance, as per
Def. III.2, where there is one cluster for each polygon. The vertices V are obtained by sampling a finite set
of poses in each polygon and assigning them to the respective cluster. The edges E are obtained by making
all possible inter-cluster connections using Dubins minimum time state-to-state distances as weights.

We perform the pose sampling in Def. III.3 using what is known as a quasirandom sequence, although it
could also be performed with a random sequence, uniform grid, or some heuristic. A quasirandom sequence
is a deterministic sequence which densely fills a space and concurrently optimizes a generalized notion of
resolution such as dispersion.i Given a set of samples in a metric space, the dispersion of that set is the
radius of the largest empty ball. Although there are many different quasirandom sequences to choose from
in the literature,21,22,29 we have chosen to use Halton sequences for simplicity, efficiency, and because they
(1) are asymptotically optimal with respect to dispersion, (2) have, with high probability, better dispersion
than uniform random sampling, and (3) allow more flexibility in the number of samples than a regular grid.
Halton sequences are defined formally as follows.

Definition III.4 (Halton Sequence30). Let b1, . . . , bs be coprime positive integers greater than 1. For each
j ∈ {1, . . . , s}, let the base bj representation of an integer k be given by

k =
∑

i

aijb
i
j (aij ∈ {0, 1, . . . , bj − 1}).

Let
Φbj

(k) :=
∑

i

aijb
−(i+1)
j .

Then the s-dimensional Halton sequence h(b1,...,bs−1)(k) : N → [0, 1]s is

h(b1,...,bs)(k) = (Φb1(k),Φb2(k), . . . ,Φbs
(k)).

A Halton sequence produces samples on the s-dimensional unit box in R
s, for some s, so in order to use

it for sampling tours, we must show how to map samples from a unit box onto poses in the polygons of a
PVDTSP instance. The definitions and main convergence result Theorem III.9 to follow show that, without
loss of generality, we may construct our PVDTSP roadmaps by sampling Halton points on a 2-dimensional
unit box even though the full Dubins state space SE(2) is 3-dimensional. In particular, it suffices to map
Halton points on the 2-dimensional unit box to entry poses of the polygons as shown in Fig. 4. By entry pose
of a polygon we mean a pose which is positioned on the polygon’s perimeter and either oriented towards the
polygon’s interior or parallel with its boundary.

iThere exist other generalized notions of resolution in the literature, e.g., discrepancy is usually used in the Monte-Carlo
integration context.29
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Definition III.5 (Metric Space of Entry Poses (Xentry, ρX)). Let Xentry ⊂ X = SE(2) be the 2-dimensional
set of all Dubins states which correspond to an entry pose of some polygon in a PVDTSP instance. We
endow Xentry with the metric ρX as follows. For any two points x = (x, y, ψ) and x′ = (x′, y′, ψ′) in Xentry,

ρX(x,x′) :=
√

|x− x′|2 + |y − y′|2
︸ ︷︷ ︸

Euclidean metric on R2

+ min{|ψ − ψ′|, 2π − |ψ − ψ′|}
︸ ︷︷ ︸

geodesic distance on S

. (6)

To achieve a prescribed dispersion on a bounded s-dimensional continuous space can require arbitrarily
many more samples than to achieve the same dispersion on a codimension one surface. Constructing a
PVDTSP roadmap by sampling on the 2-dimensional Xentry instead of the 3-dimensional X should therefore
significantly reduce the computational time complexity of any method which uses the roadmap.

Definition III.6 (Halton Entry Pose Induced PVDTSP Roadmap Ri). Let Ri denote a PVDTSP roadmap,
as per Def. III.3, where the vertices are obtained from mapping the first i terms of the 2-dimensional Halton
quasirandom sequence of bases 2 and 3 onto the space of entry poses as in Fig. 4.

Definition III.7 (Metric Space of Dubins Tours (D, ρD)). Let D be the set of all finite-length closed Dubins
tours in the plane. We endow D with a metric ρD as follows. For any two tours τ : S → R

2 and τ ′ : S → R
2

in D,
ρD(τ, τ ′) := inf

f :S↔S

sup
t∈S

||τ(t) − τ ′(f(t))||2, (7)

where inff :S↔S is the infimum over all reparameterizations between the tours, supt∈S is the supremum over
all positions along the tours, and || ||2 is the L2 norm in R

2.

Definition III.8 (Set of PVDTSP-feasible Dubins Tours Dfeas). Let Dfeas be the set of all tours in D which
pass through every polygon of a PVDTSP instance.

We are now ready to state the main convergence result which will directly lead to convergence properties
of the methods in Sec. III.B and III.C.

Theorem III.9 (Roadmap Convergence). Let {τi}
∞
i=1 be the sequence of best tours contained in the sequence

of roadmaps {Ri}
∞
i=1, respectively. Then the sequence of costs {C(τi)}

∞
i=1 is nonincreasing and

lim
i→∞

C(τi) ≤ inf
τ∈D◦

feas

C(τ). (8)

Proof. From Def. III.6 we know that a roadmap Ri is contained in another roadmap Rj whenever j ≥ i,
therefore the best tour in Ri is also in Rj . This ensures the sequence of costs {C(τi)}

∞
i=1 is nonincreasing.

The limit of the sequence of costs on the left hand side of Eq. 8 must exist because it is monotonic and lower
bounded by zero. To prove the inequality it suffices to show that for all ǫ > 0 there exists N such that i > N

implies
C(τi) ≤ inf

τ∈D◦
feas

C(τ) + ǫ. (9)

By definition of infimum, there exists a sequence of tours {τ ′j}
∞
j=1 in D◦

feas such that

lim
j→∞

C(τ ′j) = inf
τ∈D◦

feas

C(τ),

i.e., for all ǫ > 0 there exists N1 such that j > N1 implies

C(τ ′j) ≤ inf
τ∈D◦

feas

C(τ) +
ǫ

2
. (10)

A tour τ ′j must first enter each polygon at a unique entry pose. Because we are sampling poses densely in
Xentry, we can always choose i large enough that Ri has a set of entry poses arbitrarily close to the entry
poses of τ ′j (with respect to the metric ρX). This together with the fact that τ ′j is in the interior of Dfeas

implies that for all ǫ > 0 there exists N2 such that

C(τi) ≤ C(τ ′j) +
ǫ

2
(11)
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whenever i > N2. Combining Eq. 10 and 11, we obtain the desired result that for all ǫ > 0 there exists
N = max{N1, N2} such that i > N implies

C(τi) ≤ C(τ ′j) + ǫ
2

≤ infτ∈D◦
feas

C(τ) + ǫ
2 + ǫ

2

= infτ∈D◦
feas

C(τ) + ǫ.

1
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Figure 4. Green polygons are target visibility sets of a PVDTSP instance. The roadmap for a PVDTSP instance is
an FOTSP instance which we construct in three steps. First we sample points from a Halton quasirandom sequence
on the unit box (upper left). Second we map the quasirandom samples onto the space of entry poses represented by
another box (upper right), where the horizontal axis represents a parameterization of position along the 1D polygon
perimeters and the vertical axis represents entry angle in radians. These entry poses are the roadmap vertices and the
dashed lines (upper right) show the separation between polygons. The samples in the boxes correspond precisely to
the entry pose samples shown on the plan view of the polygons (lower left). The vertices are partitioned into clusters
according to which polygon they belong to. The third and last step is to create the roadmap edges by making all
possible inter-cluster connections between vertices using Dubins shortest paths (lower right, blue curves). The edges
are thus weighted by their Dubins distances. For comparison, an example roadmap for collision-free path planning is
shown in Fig. 11.

In words, Theorem III.9 states that the best tour cost taken from the sequence of (Halton entry pose
induced) roadmaps is no greater, in the limit, than the cost of any nonisolated feasible tour. A roadmap
may by chance contain an isolated global optimal tour, hence Eq. 8 is an inequality rather than equality. An
example of an isolated global optimum is shown in Fig. 5.
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Figure 5. Isolated global optima can exist for a PVDTSP instance. In this example an isolated global optimal tour
consists of the minimum turn radius circle (blue) just touching the outer vertices of the polygons.

III.B. Resolution Complete Method

We describe in this section a method which is resolution complete, which means it provably converges, in the
limit as the number of samples in the roadmap increases, to a solution at least as good as any nonisolated
solution.j A procedural outline is shown in Tab. 1. The input consists of n polygons, a vehicle minimum

Table 1. Outline of Resolution Complete Method for the PVDTSP

1: Construct roadmap by sampling entry poses on the polygon boundaries

2: Use Noon-Bean transform to convert Roadmap to an ATSP instance

3: Solve ATSP instance

4: Extract PVDTSP solution from ATSP solution

turn radius rmin, and a sample count nsamples. First a roadmap is constructed by sampling nsamples Halton
entry poses as per Def. III.6. Second, the roadmap FOTSP instance is converted to an ATSP instance using
the Noon-Bean transformation,19 illustrated in Fig. 6 and defined as follows.

Definition III.10 (Noon-Bean Transformation). Suppose we are given an FOTSP instance specified, as
in Def. III.2, by a weighted directed graph G = (V,E) together with a partitioning into clusters S =
{S1, S2, S3, . . . , SnS

}. Then the Noon-Bean Transformation of this FOTSP instance is an ATSP instance
G′ = (V ′, E′) constructed as follows. Begin with G′ = G, i.e., let V ′ = V and E′ = E, then make these three
modifications to E′:

(i) For each cluster, add zero-weight directed edges to E′ to create a zero-cost cycle which traverses all the
vertices of the cluster (so there are a total of nS zero-cost cycles),

(ii) cyclically shift intercluster edges of E′ so that they emanate from the preceeding vertex in their respective
zero-cost cycles, and

(iii) add a large penalty M =
∑

i,j wi,j, i.e., the total of all weights in G, to the weight of all intercluster
edges in E′.

The third step of the method is to solve the ATSP instance, which can be done using any exact ATSP solver.
The fourth and final step is to extract the PVDTSP solution form the ATSP solution by taking only the
first vertex visited in each cluster, thus skipping the fictitious zero-cost edges.

The convergence of the method as the number of samples nsamples goes to infinity is captured in the
following corollary to Theorem III.9.

Corollary III.11 (Convergence of Resolution Complete Method). Let {τi}
∞
i=1 be the sequence of tours

computed by the resolution complete method when applied to the sequence of roadmaps {Ri}
∞
i=1, respectively.

jThis definition of resolution complete differs slightly from the useage in the context of sampling-based roadmap methods
for collision free path planning, where it means that a method is guaranteed to find a nonisolated collision-free path as long
as there are enough samples. However, the definitions are deliberately compatible so that a resolution complete collision-free
path planner can be used in conjunction with our PVDTSP method in case we desire to solve a PVDTSP with obstacles. We
address these topics further in Sec. III.E and IV.A
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Figure 6. An FOTSP instance such as this example (left) can be transformed into an equivalent ATSP instance
(right) using the Noon-Bean transformation. This transformation consists of (1) adding to each cluster a zero-cost cyle
which traverses all the vertices of that cluster, (2) cyclically shifting intercluster edges so that they emanate from the
preceeding vertex in their respective zero-cost cycles, and (3) adding a large penalty M to interlcuster edges so that
each cluster is only visited once. Once a solution to the ATSP instance is found, a solution to the FOTSP instance can
by extracted by taking only the first vertex visited in each cluster, thus skipping fictitious zero-cost edges. Bold edges
show equivalent optimal tours in the example FOTSP and ATSP instances.

Then the sequence of costs {C(τi)}
∞
i=1 is nonincreasing and

lim
i→∞

C(τi) ≤ inf
τ∈D◦

C(τ). (12)

Proof. It is proven in Ref. 19 that the Noon-Bean transformation is exact in the sense that if the exact
solution of the ATSP instance is found, then the extracted solution to the FOTSP instance will also be
exact. This means the method will always find the best tour in a given roadmap. The corollary thus follows
directly from Theorem III.9.

Building the roadmap takes time complexity O(n2
samples) because adding a vertex or edge costs constant

time and there are O(n2
samples) edges (no more than in a complete graph). The Noon-Bean transformation

also takes time complexity O(n2
samples) because it adds only nsamples zero-weight edges, but modifies one at a

time the other O(n2
samples) edges. Solving the ATSP instance of nsamples vertices is NP-hard and therefore we

cannot expect to do it in guaranteed polynomial time. However, state-of-the-art heuristic ATSP solvers are
effectively exact and have an (empirically determined) average case runtime of O(n2.2

samples).
31,32 We address

further in Sec. III.D the issue of ATSP solver exactness versus effective exactness. Extracting the PVDTSP
solution from the ATSP solution takes only O(nsamples) time, so supposing we use a heuristic ATSP solver,
we can expect the average case runtime of the entire method to be

O(n2.2
samples). (13)

III.C. Approximate Dynamic Programming Method

The method we describe in this section uses approximate dynamic programming. A procedural outline is
shown in Tab. 2. The input consists of n polygons, a vehicle minimum turn radius rmin, and a sample count
nsamples. First a roadmap is constructed by sampling nsamples Halton entry poses as per Def. III.6. Second,
the FST (Fischetti-Salazar-Toth) transformation,20 defined in Def. III.12 and illustrated in Fig. 7, is applied
to the roadmap FOTSP instance to obtain an ATSP instance.

Definition III.12 (FST Transformation). Suppose we are given an FOTSP instance specified, as in Def. III.2,
by a weighted directed graph G = (V,E) together with a partitioning into clusters S = {S1, S2, S3, . . . , SnS

}.
Then the FST Transformation of this FOTSP instance is an ATSP instance G′ = (V ′, E′) constructed as
follows. There is one vertex in V ′ for every cluster of the FOTSP instance. There is a directed edge from
vertex v′i ∈ V ′ to vertex v′j ∈ V ′ if and only if there exists a directed edge from cluster Si to cluster Sj. The
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Table 2. Outline of Approximate Dynamic Programming Method for the PVDTSP

1: Construct roadmap by sampling entry poses on the polygon boundaries

2: Use FST transform to obtain an ATSP instance from the roadmap

3: Solve ATSP instance to obtain a cluster ordering

4: Solve Dynamic Programs induced by cluster ordering from ATSP solution

5: Select best Dynamic Program solution as PVDTSP solution

weight w′
i,j of the directed edge from each such v′i to v′j is the arithmetic mean of the weights of all directed

edges from Si to Sj.

Solving the ATSP instance in the third step gives an approximate order p to visit the roadmap FOTSP
clusters. From this point on, any edges in the roadmap which do not satisfy order p are ignored. Making use
of the cluster and vertex labeling scheme introduced in Eq. 5, we now describe the fourth step of the method.
Since we can perform a relabeling as necessary, suppose without loss of generality that p = (1, 2, 3, . . . , nS),
i.e., the approximate cluster ordering is S1, S2, S3, . . . , SnS

. Suppose further that we known the optimal
roadmap FOTSP solution passes through the j∗th vertex v(1,j∗) of the first cluster. Treating clusters as
stages, an optimal FOTSP solution satsifying order p can be found by solving the dynamic programming
recursion

G∗(v(nS ,j)) = d(v(nS ,j), v(1,j∗)) (j = 1, . . . , nSnS
)

G∗(v(i,j)) = mink∈{1,...,nSi+1
}

{

d(v(i,j), v(i+1,k)) +G∗(v(i+1,k))
}

(i = nS , . . . , 2; j = 1, . . . , nSi
)

G∗(v(1,j∗)) = mink∈{1,...,nS2
}

{

d(v(1,j∗), v(2,k)) +G∗(v(2,k))
}

,

(14)

where G∗(v) denotes the optimal-cost-to-go from a vertex v, and d(v, v′) is the weight of the directed edge
from vertex v to vertex v′. Since it is not known a prior which vertex in the first cluster is i∗, one dynamic
program must be solved for each vertex in the first cluster, hence step five of the method is to select the best
out of nS1

dynamic program solutions.
The convergence of the method as the number of samples nsamples goes to infinity is captured in the

following corollary to Theorem III.9.

Corollary III.13 (Convergence of Approximate Dynamic Programming Method). Let {τi}
∞
i=1 be a sequence

of tours computed by the approximate dynamic programming method when applied to the sequence of roadmaps
{Ri}

∞
i=1, respectively. If there exists N such that τi satisfies an order p for all i > N then the sequence of

costs {C(τi)}
∞
i=N+1 is nonincreasing and

lim
i→∞

C(τi) ≤ inf
τ∈(D◦

feas
)p

C(τ), (15)

where (Dfeas)p is the set of all PVDTSP-feasible tours which satisfy order p.

Proof. Let {(Ri)p}
∞
i=1 be the sequence of roadmaps as in Def. III.6, but where only edges satisfying order

p are allowed. Dynamic programming will always find the best tours in these p-limited roadmaps, therefore
the proof of this corollary is exactly the same as the proof for Theorem III.9, except Drmfeas is replaced by
(Dfeas)p and {Ri}

∞
i=1 by {(Ri)p}

∞
i=1.

Building the roadmap takes time complexity O(n2
samples) because adding a vertex or edge takes constant

time and there are O(n2
samples) edges (no more than in a complete graph). The FST transformation also takes

time complexity O(n2
samples) because it must access each of the O(n2

samples) edges of the FOTSP instance in
order compute the weights of the edges in the ATSP instance. Since the ATSP is NP-hard, we assume a
state-of-the-art heuristic ATSP solver with (empirically determined) average case runtime of O(n2.2) will be
used.31,32 On average there will be

nsamples

n
vertices per cluster, so the average case total time complexity of

solving the dynamic programs is O(
n2

samples

n
). Adding up all the time complexities, we can expect the average

case runtime of the entire method to be

O(n2.2 +
n2

samples

n
+ nsamples). (16)
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Figure 7. The FST transform of an FOTSP instance (upper left) is an ATSP instance (upper right) where (1) the
vertices of the ATSP instance correspond to clusters of the FOTSP instance, and (2) the weight of each directed edge
in the ATSP instance is the average weight of directed edges between the respective clusters in the FOTSP instance.
Solving the ATSP instance gives an approximate ordering, say p, of the clusters of the FOTSP instance. If one ignores
in the FOTSP instance all edges not satisfying the ordering p (bottom), then an approximate FOTSP solution (bottom
bold) can be found by dynamic programming with the clusters as stages.

III.D. Numerical Study

We have implemented the sampling-based roadmap methods of Sec. III.B and III.C in C++ on a 2.33 GHz
i686. For solving ATSP instances, our implementations call the powerful LKH32 solver as a subroutine.
Strictly speaking, LKH is based on what is known as the Lin-Kernighan heuristic, and therefore is an
inexact solver, i.e., it is not guaranteed to find the global optimal solution to an ATSP instance. Using an
inexact ATSP solver with what we have been calling the “resolution complete method” means that it is no
longer truly resolution complete and therefore not guaranteed to converge to a nonisolated global optimum.
However, allowing ourselves a slight abuse of terminology, we retain the name “resolution complete method”
in the presentation of our numerical results because state-of-the-art heuristic TSP solvers, e.g., LKH or
Linkern, perform so well in practice that they are widely accepted as effectively exact for ATSP instances
having up to hundreds or even thousands of nodes.32,33 Moreover, exact ATSP solvers can be extremely
slow, sometimes taking hours to find a solution that an inexact heuristic solver finds in only seconds. k

Hours of computation time may not be available in UAV applications requiring online solutions.
Out of several dozen problem instances we experimented with, the results from three representative

examples are shown in Tab. 3, Fig. 8, Fig. 9, and Fig. 10. In all examples the aircraft minimum turn

kAccording to Ref. 32, the empirically determined average case run-time of LKH on an ATSP instance with nnodes nodes is
O(n2.2

nodes
).
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radius was rmin = 3 m. Both methods deliver good solutions and are suitably fast for online purposes when
applied to PVDTSP instances having up to about 20 targets. The computation times for the approximate
dynamic programming method are generally a little shorter than for the resolution complete method, but
the resulting tours are also a little longer. The plots of computation time vs. sample count seem to match
the predicted average case time complexities in Eq. 13 and 16. One can see, from the plots of solution quality
vs. sample count and computation time vs. sample count, that a user of either method can indirectly trade
off computation time for solution quality by adjusting the number of samples. The resolution complete
method appears to monotonically converge to nonisolated global optima as the number of samples grows,
so we presume the LKH solver is indeed effectively exact for these examples having up to 20 targets and
1500 samples. In just a few examples out of dozens we tested did we observe slight nonmonotonicity. This
mostly occured when there were greater than 20 targets and 1500 samples. Although this indicates LKH
is no longer effectively exact for the larger size problem instances, the approximate solutions it gave were
consistently very good.

The PVDTSP instances used for experimentation in this section are the same as those used for testing
the genetic algorithm presented in Ref. 6. For small instances with around 5 targets or less, the performance
of the genetic algorithm, in terms of solution quality per computation time, is comparable to that of the
sampling-based roadmap methods. For larger problem instances with greater than 5 targets the sampling-
based roadmap methods perform significantly better.

Table 3. Statistics from resolution complete and approximate dynamic programming algorithms implemented in C++
on a 2.33 GHz i686.

Instance No. of Resolution Complete Approx. Dynamic Programming

Samples Computation Time Tour Length Computation Time Tour Length

Fig. 8 400 8.05 s 37.64 m 6.12 s 37.64 m

5 targets

Fig. 9 800 53.54 s 67.44 m 51.42 s 69.89 m

10 targets

Fig. 10 1500 506.07 s 118.99 m 447.14 s 142.03 m

20 targets

III.E. Relationship to Sampling-Based Roadmap Methods for Collision-Free Path Planning

As mentioned in Sec. I, sampling-based roadmap methods in the robotics literature, surveyed nicely in
the recent texts Ref. 21 and 22, have traditionally been used exclusively for planning collision-free paths
through continuous spaces by discretizing the obstacle-free portion of the space into a finite directed graph
called a roadmap, e.g., as shown in Fig. 11. The roadmap can then be searched using standard shortest path
algorithms such as Dijkstra or A∗.34 It is interesting to note that for collision-free path planning the roadmap
vertices must be sampled from the full 3-dimensional Dubins state space, yet for a PVDTSP roadmap it is
sufficient to sample only on the 2-dimensional space of entry poses (Fig. 4 vs. Fig. 11).

IV. Extensibility

IV.A. Handling Wind, Airspace Constraints, and Any Vehicle Dynamics

In Sec. II we formulated the minimum time reconnaissance path planning problem as finding a sequence
of states (x1, . . . ,xn) from which the targets can be photographed. We assumed a minimum time state-to-
state trajectory planner was available as a “black box” that could be accessed by our algorithms in order
to evaluate the distance function d(x,x′), which is all we need to evaluate the goodness of any candidate
solution. In this way, the minimum time state-to-state trajectory planner is a module within our algorithms.
We could therefore use our algorithms with any of the minimum time state-to-state trajectory planners
available in the literature. These include planners which can handle wind, no-fly zones, and any vehicle
dynamics. The literature on nonholonomic trajectory planning is vast, so we survey only briefly a few works
most relevant.
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Without obstacles or wind, the procedure for computing an optimal Dubins pose-to-pose path was first
shown using measure theoretic arguments in Ref. 3, then later more concisely using Pontryagin’s maximum
principle from optimal control in Ref. 24. More recently it has been shown that in a constant wind field
without obstacles, a shortest pose-to-pose Dubins path can be caclulated in constant time to fixed accu-
racy.4,35,36 Using these methods, pose-to-pose shortest path queries with no obstacles can be computed in
constant time.

Given a polygonal environment with polygonal holes represented by a total of m vertices, the shortest
collision-free Euclidean path (no curvature constraint) can be calculated in O(m logm) time.37 Unfortu-
nately the same problem with a Dubins vehicle is NP-hard in m.38 However, much work has been done
to quickly find nearly optimal obstacle avoiding paths, surveyed further in Ref. 21, 22, 39. Trajectory plan-
ners specifically intended for fixed-wing UAVs, which use a branch and bound technique, are described in
Ref. 40, 41. Another approach to nonholonomic motion planning with obstacles is to use a MILP (Mixed
Integer Linear Program).42,43

IV.B. Open-Path vs. Closed-Tour Problems

So far in this article, we have considered only closed-tour solutions to the reconnaissance UAV path planning
problem. One may alternatively wish to find an open reconnaissance path from a fixed initial pose xinitial to
a different fixed final pose xfinal. In this case, instead of the closed-tour cost function in Eq. 2, we use the
open path cost function

C(x1, . . . ,xn) = d(xinitial,x1) +

n−1∑

i=1

d(xi,xi+1) + d(xn,xfinal).

The sampling-based roadmap methods can be applied to open-path problems with only slight modification in
how the roadmap is constructed. The open-path roadmap has all the vertices and edges that the closed-tour
roadmap of Def. III.3 does, but in addition has two degenerate (single-vertex) clusters, one for the initial pose
and one for the final pose. The initial degenerate cluster is connected by distance d-weighted edges outgoing
to all vertices in nondegenerate clusters. The final degenerate cluster is connected (1) by a zero-weight edge
outgoing to the initial cluster vertex, and (2) by distance d-weighted edges incoming from all vertices in the
nondegenerate clusters.

V. Conclusion

We have formulated the general aircraft visual reconnaissance problem for static ground targets in terrain
and shown that, under simplifying assumptions, it can be reduced to a variant of the Traveling Salesman
Problem which we call the PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem). The PVDTSP
reduces to the well-studied DTSP and ETSP in the sparse limit as targets are very far apart, but our worst-
case analysis demonstrated the importance of developing specialized algorithms for the PVDTSP in the dense
limit as targets are close together and polygons may overlap significantly. We designed two sampling-based
roadmap methods for the PVDTSP. These methods operate by sampling finite discrete sets of vehicle states
to approximate a PVDTSP instance by an FOTSP instance, then applying existing FOTSP algorithms.
One of our sampling-based roadmap methods uses what is known as the Noon-Bean transformation and
is resolution complete, which means it provably converges to a nonisolated global optimum as the number
of samples grows. Our other sampling-based roadmap method achieves faster computation times by using
an approximate dynamic programming technique, but consequently only converges to a nonisolated global
optimum modulo target order. In numerical experiments, both sampling-based roadmap methods delivered
good solutions suitably quickly for online purposes when applied to PVDTSP instances having up to about 20
targets. For problem instances with greater than 5 targets the sampling-based roadmap methods significantly
outperformed the genetic algorithm in Ref. 6. Additionally, both methods allow trade-off of computation
time for solution quality and are extensible to handle wind, airspace constraints, any vehicle dynamics, and
open-path problems. The methods could also be used in a receding horizon fashion for stochastic scenarios
with pop-up targets.

While the algorithms we have presented are essentially ready to be fielded, there is much room for
future work. We are currently investigating extensions to multiple vehicles, constant factor approximation
guarantees, a way to calculate how many samples a roadmap needs to guarantee a prescribed accuracy, and
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optimal ratios of roadmap orientation dispersion to position dispersion. Aside form improvements to the
existing algorithms, it would be interesting to numerically evaluate hybrid approaches.
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Figure 8. Computed example with n = 5 targets, aircraft minimum turn radius rmin = 3 m. Green polygons represent
the target visibility regions. Black dots are the tour nodes. Cf Tab. 3.
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Figure 9. Computed example with n = 10 targets, aircraft minimum turn radius rmin = 3 m. Green polygons represent
target visibility regions. Black dots are the tour nodes. Cf Tab. 3.
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Figure 10. Computed example with n = 20 targets, aircraft minimum turn radius rmin = 3 m. Green polygons represent
target visibility regions. Black dots are the tour nodes. Cf Tab. 3.
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Figure 11. Suppose the red polygons are obstacles. A roadmap for computing collision-free Dubins paths between
pairs of poses is a finite directed graph whose vertices are poses sampled from the freespace (black arrows, left) and
whose edges are obtained by attempting to make collision-free connections between samples using a local planning method,
usually a Boundary Value Problem solver (blue curves, right). In this example poses were sampled using a Halton
quasirandom sequence in SE(2), however, one could alternatively use random or uniform grid sampling. To find a
collision-free path between two poses, those poses are connected to the roadmap using the local planning method, then
the roadmap is searched using a shortest path algorithm such as Dijkstra or A∗. Cf. Fig. 4.
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