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This article considers a path planning problem for a single fixed-wing aircraft performing
a reconnaissance mission using EO (Electro-Optical) camera(s). A mathematical formu-
lation of the general aircraft visual reconnaissance problem for static ground targets in
terrain is given and it is shown, under simplifying assumptions, that it can be reduced
to a PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem), a variation of the
famous TSP (Traveling Salesman Problem). Two algorithms for solving the PVDTSP are
developed. They fall into the class of algorithms known as sampling-based roadmap meth-
ods because they operate by sampling a finite set of points from a continuous state space
in order to reduce a continuous motion planning problem to planning on a finite discrete
graph called a roadmap. Under certain technical assumptions, the algorithms are resolution
complete, which means the solution returned provably converges to a global optimum as
the number of samples grows, i.e., as the the resolution of the roadmap becomes finer. The
first algorithm is resolution complete under slightly milder assumptions, but the second
algorithm achieves faster computation times by a novel roadmap construction. Numerical
experiments indicate that, for up to about 20 targets both algorithms deliver very good
solutions suitably quickly for online purposes. Additionally, the algorithms allow trade-off
of computation time for solution quality and are shown extensible to handle wind, airspace
constraints, any vehicle dynamics, and open-path (vs. closed-tour) problems.

I. Introduction

UAVs (Unmanned Air Vehicles) are increasingly being used for both civilian and military applications
such as environmental monitoring, geological survey, surveillance, reconnaissance, and search and rescue.1,2

Good control and planning algorithms are a key component of UAV technology because they can increase
operational capabilities while reducing risk, costs, and operator workloads. In this article we present a
novel path planning algorithm for a single fixed-wing aircraft performing a reconnaissance mission using EO
(Electro-Optical) camera(s). Given a set of stationary ground targets in a terrain (natural, urban, or mixed),
the objective is to compute a path for the reconnaissance aircraft so that it can photograph all targets in
minimum time. That the targets are situated in terrain plays a significant role because terrain features can
occlude visibility. As a result, in order for a target to be photographed, the aircraft must be located where
both (1) the target is in close enough range to satisfy the photograph’s resolution requirements, and (2) the
line-of-sight between the aircraft and the target is not blocked by terrain. For a given target, we call the set
of all such aircraft positions the target’s visibility region. An example visibility region is illustrated in Fig. 1.
In full generality, the aircraft path planning can be complicated by wind, airspace constraints (e.g. due to
enemy threats or collision avoidance), aircraft dynamic constraints, and the aircraft body itself occluding
visibility. However, under simplifying assumptions, if we model the aircraft as a Dubins vehiclea, approximate
the targets’ visibility regions by polygons, and let the path be a closed tour, then the reconnaissance path
planning problem can be reduced to the following.

For a Dubins vehicle, find a shortest planar closed tour which visits at least one point in each of
a set of polygons.

∗This version: June 26, 2011
†PhD student, Center for Control, Dynamical Systems, and Computation; karl@engr.ucsb.edu. Student Member AIAA.
‡PhD student, Department of Mechanical Engineering; paul.v.oberlin@gmail.com
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aA Dubins vehicle is one which moves only forward and has a minimum turning radius.3,4
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Figure 1. Top shows an example target, a ground vehicle parked next to a building in urban terrain. The set of all
points which are close enough to the target to satisfy photograph resolution requirements is a solid sphere (bottom
left). The green two-dimensional region in the sky (bottom right) shows the subset of the sphere, at a reconnaissance
aircraft’s altitude h, where target visibility is not occluded by terrain. Assuming the aircraft body itself doesn’t occlude
visibility, then flying the aircraft through the green region is sufficient for the target to be photographed, hence we call
it the target’s visibility region for fixed aircraft altitude h.

We refer to this henceforth as the PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem) since it
is a variation of the famous TSP (Traveling Salesman Problem).b A graphical illustration of the PVDTSP
is shown in Fig. 2.

I.A. Related Work

To our knowledge the PVDTSP has not previously been studied aside from Ref. 6 where we designed a genetic
algorithm. Although the genetic algorithm performs on average fairly well in Monte-Carlo numerical studies,
there unfortunately is significant variance in solution quality and no proven performance guarantees. Because
the PVDTSP has embedded in it the combinatorial problem of choosing the order to visit the polygons, the
solution space is very large and discontinuous. This precludes direct application of numerical optimal control
techniques traditionally used in trajectory optimization, surveyed, e.g., in Ref. 7. However, several related
variations of the TSP are of interest (summarized in Table 1). The ETSP (Euclidean TSP) is a TSP where
the vertices of the graph are points in the Euclidean plane R

2 and the edges are weighted with Euclidean
distances. In the ETSPN (Euclidean TSP with Neighborhoods) one seeks a shortest closed Euclidean path
passing through n subsets of the plane. The ETSP is NP-hard8 and so is the ETSPN by virtue of being
a generalization of the ETSP. The DTSP (Dubins TSP), where a Dubins vehicle must follow a shortest
tour through n single point targets in the plane, is known to be NP-hard.12 Various heuristics for both
single and multi-vehicle versions of the DTSP can be found, e.g., in Ref. 13, 14, and 15. The PVDTSP

bThe TSP, one of the most famous NP-hard problems of combinatorial optimization, is to find a minimum-cost tour (cyclic
path) through a weighted graph such that every vertex is visited exactly once. If the graph is directed, it is called the ATSP
(Asymmetric TSP). See, e.g., Ref.5
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Table 1. Relevant Variations of the TSP (Traveling Salesman Problem), all NP-Hard

Name Brief Description References

ATSP (Asymmetric TSP) Find a minimum-cost tour (cyclic path)
through a weighted directed graph such
that every vertex is visited exactly once

5

STSP (Symmetric TSP) Find a minimum-cost tour through a
weighted undirected graph such that
every vertex is visited exactly once

5

ETSP (Euclidean TSP) Special case of STSP where the vertices
of the graph are points in the plane R

2

and the edges are weighted with Eu-
clidean distances

8

ETSPN (ETSP with Neighborhoods) Find a minimum-cost Euclidean tour
passing through n subsets of the plane

9–11

DTSP (Dubins TSP) Find a minimum-cost tour for a Dubins
vehicle through n single point targets in
the plane

12–20

PVDTSP (Polygon-Visiting DTSP) Find a minimum-cost tour for a Dubins
vehicle through n polygons in the plane

6

FOTSP (Finite One-in-set TSP) Find a minimum-cost tour which passes
through at least one vertex in each of
a finite collection of clusters, the clus-
ters being mutually exclusive finite ver-
tex sets

5,21,22
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Figure 2. Example problem instance and candidate solution path for the PVDTSP (Polygon-Visiting Dubins Traveling

Salesman Problem). In order to photograph all targets, the aircraft must fly through at least one point in each target’s
visibility region (green), cf. Fig. 1.

reduces to the ETSPN in the limit as the vehicle’s minimum turning radius becomes small compared to
the distances between polygons. Similarly, as the area of the polygons goes to zero, the PVDTSP reduces
to the DTSP, hence the PVDTSP is NP-hard. There exist a number of algorithms with approximation
guarantees for both the DTSP16–18 and ETSPN,9–11 but it appears that extending any of these algorithms
to the PVDTSP would put undesirable restrictions on the problem instances which could be handled, e.g.,
the polygons would not be allowed to overlap. The FOTSP (Finite One-in-set TSP)c is the problem of
finding a minimum-cost closed path which passes through at least one vertex in each of a finite collection of
clusters, the clusters being mutually exclusive finite vertex sets. The FOTSP is NP-hard because it has as
a special case the ATSP (Asymmetric TSP).5 An FOTSP instance can be solved exactly by transforming it
into an ATSP instance using the Noon-Bean transformation from Ref. 21, then invoking an ATSP solver.
In the robotics literature,23,24 a sampling-based roadmap methodd refers to any algorithm which operates by
sampling a finite set of points from a continuous state space in order to reduce a continuous motion planning
problem to planning on a finite discrete graph called a roadmap. Sampling-based roadmap methods have
traditionally only been used for collision-free point-to-point path planning amongst obstacles, however, in
Ref. 19 approximate solutions to the DTSP are found by sampling discrete sets of orientations that the Dubins
vehicle can have over each target, essentially approximating a DTSP instance by an FOTSP instance. The
Noon-Bean transformation is then used to convert the FOTSP instance into an ATSP instance so that a
standard ATSP solver can be applied. In a reconnaissance context, Ref. 25 solves an FOTSP to decide which
of a pair of cameras a UAV should choose to photograph each of a set of targets in sequence. Discretization
of the vehicle state space in order to approximate the original problem by an FOTSP is a key idea which we
build upon in designing sampling-based roadmap methods for the PVDTSP in the present work.

I.B. Statement of Contribution

There are two main contributions in this article. First, we precisely formulate the general aircraft visual
reconnaissance problem for static ground targets in terrain. Under simplifying assumptions, we reduce our
general formulation to the PVDTSP. Although the PVDTSP reduces to the well-studied DTSP and ETSP in
the sparse limit as targets are very far apart and minimum turning radius is small, we provide a worst-case

cWhat we have chosen to call the FOTSP is known variously in the literature as “Group-TSP”, “Generalized-TSP”, “One-
of-a-Set TSP”, “Errand Scheduling Problem”, “Multiple Choice TSP”, “Covering Salesman Problem”, or “International TSP”.

dIn this usage, “method” means a high level algorithm having multiple components, each of which may be considered an
algorithm in its own right.
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analysis demonstrating the importance of developing specialized algorithms for the PVDTSP in scenarios
where targets are close together and polygons may overlap significantly. An early version of the PVDTSP
formulation appeared in our previous work Ref. 6, but that did not include the worst-case analysis.

Our second main contribution is the design, analysis, and numerical study of two algorithms for the
PVDTSP. These sampling-based roadmap methods operate by sampling finite discrete sets of poses (positions
with orientations) in the target visibility regions in order to approximate a PVDTSP instance by an FOTSP
instance called the roadmap. Once a roadmap has been constructed, the algorithms apply the Noon-Bean
transformation from Ref. 21 to solve the FOTSP. Under certain technical assumptions, the algorithms are
resolution complete, which means the solution returned converges to a global optimum as the number of
samples grows, i.e., as the resolution of the roadmap becomes finer.e The two algorithms differ only in how
they sample poses to construct the roadmap. In the first algorithm, poses are sampled in the interior of
the visibility regions. This is a fairly straightforward extension of the angle sampling used for the DTSP
in Ref. 19. The second algorithm, however, samples so-called entry poses. Entry poses are poses which
are located on the boundary of a visibility region and are oriented towards the interior of that region. By
sampling entry poses, the second algorithm requires slightly stricter assumptions for resolution completeness,
but it greatly reduces computation times. While we have borrowed the idea of approximation by an FOTSP
from Ref. 19, the present work goes beyond a simple extension in that we (1) provide proofs of resolution
completeness and (2) use the novel entry-pose sampling technique to reduce computational time complexity.
Numerical experiments indicate that our algorithms deliver very good solutions suitably quickly for online
purposes when applied to PVDTSP instances having up to about 20 targets. They significantly outperformed
the alternative approaches of the genetic algorithm in Ref. 6 and DTSP over target locations in Ref. 19.
Additionally, our algorithms allow a means for a user to trade off computation time for solution quality and
their modular nature allows them to easily be extended to handle wind, airspace constraints, any vehicle
dynamics, and open-path (vs. closed-tour) problems.

I.C. Organization

This article is organized as follows. In Sec. II we introduce notation, mathematically formulate the minimum-
time reconnaissance aircraft path planning problem, show how to reduce the problem to a PVDTSP, and
provide the worst-case analysis motivating the development of specialized PVDTSP algorithms. We present
our algorithms in Sec. III and convergence analysis in Sec. IV. We numerically validate the algorithm in
Sec. V, describe extensions in Sec. VI, and conclude in Sec. VII.

II. Mathematical Formulation

We begin with some preliminary notation. The s-dimensional Euclidean space is R
s and S is the circle

parameterized by angle radians ranging from 0 to 2π, 0 and 2π identified. Let T = {T1, T2, . . . , Tn} be the
set of n targets which must be photographed by our aircraft. Given a set A, we denote its cardinality by |A|,
its interior by A◦, its closure by Ā, and its power set, i.e., the set of all subsets of A, by 2A. Given two sets
A and B, A×B is the Cartesian product of these sets. The state of our reconnaissance aircraft is encoded
in a vector x, which takes a value in the aircraft’s state space X.

We now define a map V : T → 2X from the set of targets to subsets of the aircraft state space. Under
this map, V(Ti) ⊂ X, called the ith target’s visibility region, is precisely the set of all aircraft states such
that Ti can be photographed whenever the aircraft is in that state. Let us assume a BVP (Boundary Value
Problem) solver is available which calculates the minimum-time aircraft trajectory between any two states x

and x′, provided a trajectory exists. We treat this minimum time between states as a “black box” distance
function denoted by d(x,x′). Now our minimum-time reconnaissance path planning problem can be
stated as

Minimize : C(x1, . . . ,xn) =
∑n−1
i=1 d(xi,xi+1) + d(xn,x1)

Subject To : for each i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n}

such that xj ∈ V(Ti),

(1)

where the decision variables are the states xi (i = 1, . . . , n). Once an optimal sequence of states (x1, . . . ,xn)
has been chosen, then the minimum-time state-to-state trajectory planner can be used to connect each

eResolution completeness is a notion of convergence commonly used in the motion planning literature; see, e.g., Ref. 23,24,26
and references therein.
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pair of consecutive states, thus we obtain a minimum-time closed reconnaissance tour. Since the complete
state space of an aircraft can be very complicated, we simplify the discussion by making the following
main assumptions.

(i) The aircraft is modeled as a Dubins vehicle with minimum turning radius rmin, fixed altitude h, and
constant airspeed Va.
Comments: This is common for small low-power UAVs.

(ii) Regardless of state, the aircraft body never occludes visibility between the camera and a target.
Comments: This holds when either there are multiple cameras covering all angles from the aircraft, or
there is a sufficiently flexible gimbaled camera with dynamics faster than the aircraft body dynamics.f

(iii) There are no airspace constraints nor wind.
Comments: As we will discuss in Sec. VI, our results can easily be extended to handle wind and no-fly
zones.

In accordance with assumption (i), the aircraft dynamics take the form







ẋ

ẏ

ψ̇






=







Va sin(ψ)

Va cos(ψ)

u






, (2)

where (x, y) ∈ R
2 are earth-fixed Cartesian coordinates, ψ ∈ S is the azimuth angle, and u is the input to

an autopilot system. Assumption (ii) tells us that a target can be photographed independent of aircraft
azimuth ψ, therefore we can abstract out the aircraft’s internal state so that its state space is reduced to

x = (x, y, ψ) ∈ X = R
2 × S = SE(2), (3)

and the Visibility regions V(T1), . . . ,V(Tn) can be represented by their 2-dimensional projections onto R
2 as

shown in Fig. 1 and 2 (though they are subsets of SE(2)). While the visibility regions may contain circular
arcs due to the camera range constraint, they can be well approximated by polygons. Hereinafter we refer
to the state of a Dubins vehicle interchangeably as “state” or “pose”. The minimum-time path between two
Dubins states x and x′ can be computed very quickly in constant time. Let L denote a left turn motion
primitive with radius rmin, R a right turn with radius rmin, and S a straight line segment. The main result
of Refs. 3 and 27 is that every optimal Dubins path can be expressed as a sequence which takes one of six
possible forms: LRL, RLR, LSL, LSR, RSL, or RSR. One can thus find the optimal path by computing
the length of the six possible path forms and selecting the shortest. This provides us with our “black box”
distance function d(x,x′) as it appears in the optimization problem Eq. 1. We write drmin

(x,x′) hereinafter
whenever we wish to emphasize the dependence of the distance function on the vehicle minimum turn radius.
We have now reduced our minimum-time reconnaissance path planning problem to a PVDTSP.

In some UAV systems in the field today, target visibility regions are neglected and reconnaissance paths
are planned by simply solving the DTSP over the target positions, i.e., the UAV is restricted to pass
directly over each target in order to photograph it. The worst-case analysis in the following Theorem II.1
demonstrates, however, that an arbitrarily large relative cost increase can be incurred by solving the DTSP
instead of the PVDTSP. This cost increase is most pronounced in the dense limit (left in Fig. 3) as targets
become very close together, which motivates our development of specialized PVDTSP algorithms for tight
urban scenarios especially. In contrast, in the sparse limit (right in Fig. 3) when the minimum turning radius
and visibility region diameters are much smaller than the distances between targets, there is no significant
advantage to solving the PVDTSP over the DTSP nor over the ETSP.

Theorem II.1 (DTSP vs. PVDTSP Worst-Case Analysis). In a fixed compact subset of the plane R
2,

solving the DTSP over point targets instead of the PVDTSP over those same targets’ visibility regions may
incur a cost penalty of order Ω(n) in the worst case.g

Proof. The set of all DTSP tours through n point targets is a subset of all PVDTSP tours through those same
targets’ visibility regions, therefore the length of a tour that results from solving the PVDTSP to optimality

fAn omnidirectional camera is another possibility, but they typically have poor resolution.
gA function f(n) is said to be Ω(n) if there exist positive constants c and n0 such that f(n) ≥ cn for all n ≥ n0.
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can be no greater than that of solving the DTSP. Now it suffices to prove the theorem by demonstrating a
class of visual reconnaissance problem instances, parameterized by the number of targets n, for which the
tour cost when solved as a DTSP is order Ω(n) (lower bounded) yet only order O(1) (upper bounded) when
solved as a PVDTSP. One such class of instances is illustrated left in Fig. 3.h Given any n noncolinear point
targets in the plane, we can linearly scale them until the radius of the circle constructed from any three of
them has radius smaller than the Dubins vehicle minimum turn radius rmin. This scaling ensures that, in
order to fly a feasible DTSP tour, the aircraft must travel a distance at least πrmin for every two targets.
Solving the DTSP over these points would thus cost Ω(n), yet letting the intersection of the targets visibility
regions’ contain all the targets, the PVDTSP could be solved with a single minimum turn radius loop and
thus cost only O(1).

Figure 3. In the dense limit (left) as the distances between targets are much smaller than the minimum turning radius,
there can be a large penalty incurred (Ω(n), see Theorem II.1 and proof) by solving the DTSP instead of the PVDTSP.
In particular, if the densely packed targets are sufficiently noncolinear, an aircraft solving the PVDTSP can photograph
all targets in a single pass (shown as blue circle), but an aircraft solving the DTSP would only be able to photograph two
targets per pass, where each pass would be at least πrmin long. In the sparse limit (right) when the minimum turning
radius and visibility region diameters are much smaller than the distances between targets, there is no significant
advantage to solving the PVDTSP over the DTSP nor over the ETSP.

III. Algorithms

We solve PVDTSPs in two main steps which together constitute our sampling-based roadmap methods.
In the fist step, a finite discrete set of poses is sampled in each polygon in order to approximate a PVDTSP
instance by an FOTSP instance. In the second step, the FOTSP is solved by transformation to an ATSP. The
approximating FOTSP instance is called the PVDTSP roadmap and its structure is made precise through
the following definitions.

Definition III.1 (ATSP). Given a weighted directed graph G = (V,E) where V is a finite set of vertices

{v1, v2, v3, . . . , vnV
}

and E a set of directed edges with weights

{wi,j |i, j ∈ {1, 2, 3, . . . , nV } and i 6= j},

the Asymmetric TSP (ATSP) is to find a directed cycle of minimum cost which visits every vertex in V

exactly once.

Definition III.2 (FOTSP). Suppose we have a weighted directed graph G = (V,E) as in the ATSP Def. III.1,
but now the vertices are partitioned into finitely many nonempty mutually exclusive vertex sets called clusters

hSuch a class of instances has been used previously in Ref. 17 to show DTSP tours have worst-case length Ω(n).
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S = {S1, S2, S3, . . . , SnS
}. The vertices can thus be written as

V =
{

v(1,1), v(1,2), v(1,3), . . . , v(1,nS1
), v(2,1), v(2,2), v(2,3), . . . , v(2,nS2

), . . .

. . . , v(nS ,1), v(nS ,2), v(nS ,3), . . . , v(nS ,nSnS
)

}

,
(4)

where v(i,j) is the jth vertex of the cluster Si. Then the Finite One-in-a-set TSP (FOTSP) is to find a
directed cycle of minimum cost which visits at least one vertex from each cluster.

Definition III.3 (PVDTSP Roadmap). A roadmap for a PVDTSP instance is an FOTSP instance, as per
Def. III.2, where there is one cluster for each polygon. The vertices V are obtained by sampling a finite set
of poses in each polygon and assigning them to their respective clusters. The edges E are obtained by making
all possible inter-cluster connections using Dubins minimum-time state-to-state distances as weights.

There are many different possible ways to sample poses for a roadmap. In Sec. III.A we describe one
technique based on straightforward extension of the angle sampling for the DTSP in Ref. 19. In Sec. III.B
we describe a novel alternative technique which, as we will see in Sec. V, performs significantly better in
practice. Once a roadmap has been constructed, we find the best tour in it by the procedure described in
Sec. III.C.

III.A. Constructing a Roadmap from Interior Poses

In Ref. 19, a roadmap for the DTSP was constructed by sampling a uniform grid of angles on S at each target.
Each cluster in their roadmap thus consisted of a set of vertices (poses) with the same (x, y) coordinates
but different ψ values evenly spaced at intervals of δψ around [0, 2π) (see Fig. 4a). A generalization of this
technique for the PVDTSP is to simply construct a roadmap by sampling a uniform grid of poses in the
interior of each visibility region (Fig. 4b). We refer to a roadmap constructed in this manner as an interior
pose roadmap.

Table 2 shows a pseudocode for interior pose roadmap construction. The visibility region parameters
V(T1), . . . ,V(Tn) provide the polygons of the PVDTSP instance; rmin is the Dubins vehicle minimum turning
radius; n̂samples is an estimate of the number of samples the roadmap should contain; and α is a weighting
parameter which determines how many angle samples there will be per (x, y) position in the grid. The larger
α is, the more angle samples there will be per (x, y) position. We use an estimate n̂samples instead of the
actual number of samples nsamples because

(i) unless the polygons of the problem instance happen to be squares, it is impossible to know a priori
how many (x, y) samples on a uniform grid will actually fall into each polygon,

(ii) in a uniform grid there is a fixed number of ψ samples per (x, y) sample, so not all sample counts are
realizable, and

(iii) it is convenient for a user to only have to keep track of the single input parameter n̂samples rather than
three separate grid spacing parameters.

Let δx be the uniform grid spacing in the x direction, δy the spacing in the y direction, and δψ the angular
spacing. If the polygons were perfect squares with total area A, δxδy divided A evenly, and δψ divided 2π
evenly, then we would expect that

nsamples =
A

δxδy

2π

δψ
. (5)

For general nonsquare polygons, the area A on line 2 can be computed, e.g., by triangulating the polygons
and summing the areas of the triangles.28 Assuming δx = δy = αδψ and solving Eq.5 for the spacings gives
the formulas on line 3 of Table 2. Using these formulas even when the polygons are not squares, nsamples

is in practice very close to the user specified n̂samples. Regardless of how close nsamples is to n̂samples, a key
feature for the convergence proof in Sec. IV is that the grid spacings monotonically go to zero as n̂samples

increases.
Once grid spacings have been set, roadmap samples are generated for the polygons separately, one at

a time (lines 4-9). For a given polygon represented as a list of vertices, an axis-aligned bounding box B

is found simply by selecting the minimum and maximum x and y coordinates over all polygon vertices. A
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uniform grid G of poses is then formed on the bounding box according to the spacings δx, δy, and δψ. The
loop on lines 7-9 is a rejection sampling procedure which ensures that only those grid samples are added to
the roadmap which actually lie in the polygon (Fig. 4b, left). Note that even when polygons overlap, their
grids are sampled separately. This means that identical pose samples may exist in distinct clusters of the
roadmap. If the best PVDTSP tour passes through the intersection of polygons, then the roadmap search
procedure to be described in Sec. III.C automatically selects poses in the intersection.

The roadmap construction is completed on lines 10-16 by adding an edge between all pairs of vertices
which belong to distinct clusters (Fig. 4b, right). Each edge is weighted by the length drmin

(x,x′) of the
minimum-time Dubins path connecting the respective poses.

Table 2. Interior Pose Roadmap Construction

INTERIOR POSE ROADMAP( V(T1), . . . ,V(Tn), rmin, n̂samples, α )

{Initialize Empty Roadmap and Set Grid Spacings}
1: (V,E)← (∅, ∅);
2: A← total of areas of polygons V(T1), . . . ,V(Tn);

3: δx← 3

q

Aα2π
n̂samples

; δy ← δx; δψ ← 1
α
δx;

{Sample Clusters}
4: for i = 1 to n do
5: B ← axis-aligned bounding box around V(Ti);
6: G← uniform grid on B with translational spacings δx and δy, and anglular spacing δψ;
7: for all poses v in G do
8: if v ∈ V(Ti) then
9: V ← V ∪ v;

{Connect Clusters}
10: for i = 1 to n do
11: for j = 1 to n such that j 6= i do
12: for all vertices v in cluster i do
13: for all vertices v′ in cluster j do
14: e← edge from v to v′ with weight drmin

(v, v′);
15: E ← E ∪ e;

16: return (V,E);

III.B. Constructing a Roadmap from Entry Poses

With very little loss of generality, we can construct a roadmap by sampling poses on the boundaries of the
polygons rather than the interiors. Let τ∗ = (x∗

1, . . . ,x
∗
n) be a sequence of poses representing a globally

optimal tour for a particular PVDTSP instance. Assume we know a priori, even before computing τ∗, that
τ∗ passes through the boundary of every polygon. Then each pose x∗

1, . . . ,x
∗
n can be taken to be (1) located

on the boundary of a polygon and (2) oriented towards the interior of that polygon. We refer to such poses
as entry poses. To assume τ∗ can be represented by a sequence of entry poses is not very restrictive in our
experience. If, for example, at least one of the n visibility regions (perhaps belonging to a remote user) is
disjoint from the other n− 1 visibility regions, then τ∗ is guaranteed to pass through the boundary of every
visibility region. The space of interior poses we sampled on in Sec. III.A was 3-dimensional, but the space of
entry poses, by being restricted to the polygon boundaries, is only 2-dimensional. Intuitively, this difference
in dimensionality may allow us to find better tours with fewer samples by building an entry pose roadmap
(Fig. 4c). Indeed, we will see in the numerical experiments in Sec. V that much faster computation times
can be achieved by using entry poses instead of interior poses.

Table 3 shows a pseudocode for entry pose roadmap construction. As for the interior roadmap construc-
tion, the parameters are the visibility regions V(T1), . . . ,V(Tn), vehicle minimum turn radius rmin, sample
count estimate n̂samples, and angle density weighting α. For reasons similar to those given in Sec. III.A, we
use an estimate n̂samples instead of the actual number of samples nsamples. On line 2, the total L of all the
perimeter lengths of all the polygons is computed. Let δl be the translational grid spacing along a polygon’s
boundary and δψ the angular spacing. If δl divided L evenly and δψ divided π evenly, then we would expect
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in a uniform grid that

nsamples =
L

δl

π

δψ
. (6)

Assuming that δl = αδψ and solving Eq.6 for the spacings gives the formulas on line 3 of Table 3. Using these
formulas, nsamples in practice is very close to the user specified n̂samples. Regardless of how close nsamples is
to n̂samples, a key feature for the convergence proof in Sec. IV is that the grid spacings monotonically go to
zero as n̂samples increases.

Once grid spacings have been set, roadmap samples are generated for the polygons separately, one at a
time (lines 4-7). For a given polygon represented as a list of vertices, the uniform grid G of entry poses is
formed simply by stepping along the boundary ∂V(Ti) at increments of δl and adding ⌊απ

δψ
⌋ samples per step

(Fig. 4c, left). The loop on lines 6-7 adds all grid samples to the roadmap. As with the interior pose roadmap
construction, even when polygons overlap, their grids are sampled separately. Identical pose samples may
thus exist in distinct clusters of the roadmap. If the best PVDTSP tour passes through the intersection of
polygons, then the roadmap search procedure to be described in Sec. III.C automatically selects poses in the
intersection as necessary.

The roadmap construction is completed on lines 8-13 by adding an edge between all pairs of vertices
which belong to distinct clusters (Fig. 4c, right). Each edge is weighted by the length drmin

(x,x′) of the
minimum-time Dubins path connecting the respective poses.

Table 3. Entry-Pose Roadmap Construction

ENTRY POSE ROADMAP( V(T1), . . . ,V(Tn), rmin, n̂samples, α )

{Initialize Empty Roadmap and Set Grid Spacings}
1: (V,E)← (∅, ∅);
2: L← total of perimeter lengths of polygons V(T1), . . . ,V(Tn);

3: δl←
q

Lαπ
n̂samples

; δψ ← 1
α
δl;

{Sample Clusters}
4: for i = 1 to n do
5: G← uniform grid of entry poses on ∂V(Ti) with translational spacing δl and angular spacing δψ;
6: for all poses v in G do
7: V ← V ∪ v;

{Connect Clusters}
8: for i = 1 to n do
9: for j = 1 to n such that j 6= i do

10: for all vertices v in cluster i do
11: for all vertices v′ in cluster j do
12: e← edge from v to v′ with weight drmin

(v, v′);
13: E ← E ∪ e;

14: return (V,E);

III.C. Finding the Best Tour in a PVDTSP Roadmap

A pseudocode for our roadmap search method is shown in Table 4. This pseudocode represents two different
algorithms depending on whether INTERIOR POSE ROADMAP or ENTRY POSE ROADMAP is substi-
tuted for the ROADMAP function on line 1. The inputs are the target visibility regions V(T1), . . . ,V(Tn),
vehicle minimum turn radius rmin, sample count estimate n̂samples, and angle density weighting α. After
the roadmap is constructed, the function NOON BEAN on line 2 transforms the roadmap FOTSP instance
(V,E) into an ATSP instance (V ′, E′) by the Noon-Bean transformation. The Noon-Bean transformation is
defined precisely as follows.

Definition III.4 (Noon-Bean Transformation21). Suppose we are given an FOTSP instance specified, as
in Def. III.2, by a weighted directed graph G = (V,E) together with a partitioning into clusters S =
{S1, S2, S3, . . . , SnS

}. Then the Noon-Bean Transformation of this FOTSP instance is an ATSP instance
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G′ = (V ′, E′) constructed as follows. Begin with G′ = G, i.e., let V ′ = V and E′ = E, then make these three
modifications to E′:

(i) For each cluster, add zero-weight directed edges to E′ to create a zero-cost cycle which traverses all the
vertices of the cluster (so there are a total of nS zero-cost cycles),

(ii) cyclically shift intercluster edges of E′ so that they emanate from the preceding vertex in their respective
zero-cost cycles, and

(iii) add a large penalty M =
∑

i,j wi,j, i.e., the total of all weights in G, to the weight of all intercluster
edges in E′.

On line 3, an ATSP solver ATSP SOLVE is called on the instance (V ′, E′). Let us assume that we have
an ATSP solver at our disposal and the instance (V ′, E′) has been solved. The solution (vk1 , . . . , vknk

) is
a list of vertices of the ATSP instance where the sequence {ki}

nk

i=1 encodes the identifiers of the vertices
in the original FOTSP instance. Using these identifiers, the procedure on lines 4-8 extracts the solution
(x1, . . . ,xn) to the FOTSP instance. Finally, to produce a sequence of waypoints followable by an aircraft,
Dubins minimum-time state-to-state trajectories can be used to interpolate between each pair of states in
the solution encoding (x1, . . . ,xn).

As part of our algorithms, we assume access to an ATSP solver. If we want to compute reconnaissance
tours suitably quickly for online purposes, then the ATSP solver must be fast. As can be expected for an
NP-hard problem, exact ATSP solvers based on branch and bound can take hours to find solutions that an
inexact heuristic solver finds in only seconds. Also, state-of-the-art heuristic TSP solvers, e.g., LKH29 or
Linkern,30 perform so well in practice that they are widely accepted as effectively exact for ATSP instances
having up to thousands of vertices. In the implementation of our roadmap method we have therefore chosen
to use the powerful LKH software for solving ATSPs. LKH is based on the Lin-Kernighan Heuristic.31 To
solve an ATSP, it begins with a randomly generated tour. It then attempts to incrementally improve the
tour by repeatedly swapping edges, according to so-called sequential positive-gain lambda-opt moves, until
no further improvement is possible. The inner workings of LKH are very sophisticated, so we refer the
interested reader to Ref. 29 for more details.

Table 4. Sampling-Based Roadmap Method for the PVDTSP

PVDTSP SOLVE( V(T1), . . . ,V(Tn), rmin, n̂samples, α )

{ Construct Roadmap and Corresponding ATSP Instance }
1: (V,E)← ROADMAP(V(T1), . . . ,V(Tn), rmin, n̂samples, α);
2: (V ′, E′)← NOON BEAN(V,E);

{ Solve ATSP Instance and Extract Best Tour }
3: (vk1

, . . . , vknk
)← ATSP SOLVE(V ′, E′);

4: cyclically shift (vk1
, . . . , vknk

) as necessary to ensure vk1
and vknk

come from distinct clusters;
5: j ← 1;
6: for i = 1 to nk do
7: if vki

is the first vertex encountered from a particular cluster then
8: xj ← vki

; j ← j + 1;

9: return (x1, . . . ,xn);

IV. Convergence Analysis

Let τ∗ be a globally optimal tour for a PVDTSP instance. Suppose for a moment that the cost function
C : (SE(2))n → R in Eq. 1 were continuous. Then provided any roadmap we use contains a tour sufficiently
close to τ∗, we would expect PVDTSP SOLVE could find a tour within any given tolerance of C(τ∗). In
other words, continuity of C would imply resolution completeness of our algorithms. Unfortunately, C is
not fully continuous because it is a sum of n discontinuous Dubins distances d(x,x′). However, as we show
in the remainder of this section, C does have useful continuity properties which allow us to prove resolution
completeness of our algorithms under certain technical assumptions.
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IV.A. Continuity Properties and General Position Assumption

Continuity properties of the Dubins distance have been shown in Ref. 32.

Lemma IV.1 (Piecewise Continuity of Dubins Distance32). For fixed initial pose, the Dubins distance
function d : SE(2) → R is continuous everywhere except on a set Sd of two 2-dimensional smooth surfacesi

embedded in the 3-dimensional domain SE(2). Furthermore, in the limit from one side of each of these
discontinuity surfaces, d is continuous up to and including on the surface.j

From this we obtain the continuity properties of the PVDTSP cost function.

Lemma IV.2 (Piecewise Continuity of PVDTSP Cost Function). The PVDTSP cost function C : (SE(2))n →
R is guaranteed to be continuous everywhere except on a finite set SC of (3n− 1)-dimensional smooth sur-
faces embedded in its 3n-dimensional domain (SE(2))n. Furthermore, in the limit from one side of each
discontinuity surface, C is continuous up to and including on the surface.

Proof. As a sum of n Dubins distances, C can only be discontinuous at a particular tour τ = (x1, . . . ,xn) if
some pose in the sequence, say xi, lies on one of the 2-dimensional discontinuity surfaces Sd of the Dubins
distance d (applying Lemma IV.2 with respect to initial pose xi−1). Let us call the 2-dimensional surface
where this occurs s. Then (SE(2))i−1 × s × (SE(2))n−i is one of the (3n − 1)-dimensional surfaces in SC .
Taking the union of all surfaces constructed in this manner for i = 1, . . . , n, we obtain all of SC . There thus
are only 2n surfaces in SC and each inherits the smoothness and one-sided continuity from Sd.

These continuity properties motivate a general position assumption that will allow us to prove resolution
completeness of our algorithms. General position assumptions, also known as generic input assumptions, are
commonly used in the field of computational geometry for proving correctness of algorithms in the absence
of certain input degeneracies which almost never occur.33 We define a PVDTSP instance as being in general
position if it is not degenerate according to either of the following definitions.

Definition IV.3 (Interior Pose Degeneracy). A PVDTSP instance is interior pose degenerate if there exists
a tour τ∗ = (x∗

1, . . . ,x
∗
n) ∈ V(T1)×· · ·×V(Tn) and δ > 0 such that for every open set A ⊂ V(T1)×· · ·×V(Tn)

it holds that supτ∈A C(τ) ≥ C(τ∗) + δ.

Definition IV.4 (Entry Pose Degeneracy). Let V̌(Ti) be the set of entry poses of V(Ti) for i = 1, . . . , n. A
PVDTSP instance is entry pose degenerate if there exists a tour τ∗ = (x∗

1, . . . ,x
∗
n) ∈ ∂V(T1)× · · · × ∂V(Tn)

and δ > 0 such that for every openk set A ⊂ V̌(T1) × · · · × V̌(Tn) it holds that supτ∈A C(τ) ≥ C(τ∗) + δ.

In words, a PVDTSP instance is degenerate if there exists a tour τ∗ such that no matter how finely we may
sample interior (resp. entry) poses, we cannot hope that any tour constructed from the sampling comes
within a prescribed tolerance δ of the cost C(τ∗). An example of a PVDTSP instance which is both interior
pose and entry pose degenerate is shown in Fig. 6. The globally optimal tour τ∗ is a minimum turn radius
circle which just grazes the outside corners of the triangular visibility regions. Any tour τ 6= τ∗ would have
to veer away from the visibility regions and then come back in order to visit them all. The cost C(τ) is thus
bounded away from C(τ∗).

As long as the input data of a PVDTSP instance is subject to some noise, then degeneracies should almost
never occur, i.e., a degenerate problem instance will occur with probability 0. A completely rigorous proof
of this would require a highly technical digression into intersection theory.34 We therefore content ourselves
with the general position assumption based on geometric intuition from the following lower-dimensional
optimization problem. Suppose we want to minimize a function f(x, y) over a unit square in R

2, where

f(x, y) =

{

0 for
√

x2 + y2 ≤ 1

1 else
(7)

iThese discontinuity surfaces of the Dubins distance function are traced out by two circular arcs in the (x, y) plane which
vary continuously along the ψ axis. Illustrations are provided in Ref. 32.

jNote that, for our purposes, it is not important which side of the discontinuity surface is continuous up to and including
on the surface.

kBy an “open set in A ∈ V̌(T1)×· · ·×V̌(Tn)”, we intend “open” in the relative topology of V̌(T1)×· · ·×V̌(Tn) as a subspace
of (SE(2))n.
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The optimal solution clearly depends on how the square is situated relative to the unit disk (see Fig. 7). One
could easily solve this problem in closed form by checking the disk and square for intersection. However,
in order to make an analogy with our PVDTSP algorithms, suppose our strategy for minimizing f is to
sample a uniform grid of points in the interior of the square and then select the sample with minimum f

value. Notice that f , similar to C, is piecewise continuous and, in the limit from one side of the (unit circle)
discontinuity surface, it is continuous up to and including on the surface. These continuity properties imply
that in the limit as the grid becomes finer in the square, the value returned by the sampling strategy should
always approach the optimum as long as the disk and square share an open set whenever they intersect. If
the disk and square do intersect but there is no such open set, we say the problem instance is degenerate.
Degeneracy occurs precisely when the disk only intersects the square at a single point, i.e., when the disk
is tangent to the square or it touches only at a corner. Given any degenerate problem instance, perturbing
that instance by a normal random variable in R

2 would result in a new problem instance which is degenerate
with probability zero. In this sense, degenerate problem instances almost never occur. Completing our
analogy with the PVDTSP: C is to f as SC is to the unit circle as visibility regions are to the square. We
thus expect, as long as the interaction between the discontinuity surfaces SC and the visibility regions is
well-behaved, that a PVDTSP instance will be in general position and our algorithms will converge.

IV.B. Resolution Completeness

We are now ready to state the main convergence results.

Theorem IV.5 (Interior Pose Roadmap Convergence). Let V(T1), . . . ,V(Tn) be visibility regions constituting
a PVDTSP instance in general position. Let {Ri}

∞
i=1 be a sequence of roadmaps constructed according to

Def. III.3 such that the vertices of Ri are dense in the visibility regions V(T1), . . . ,V(Tn) in the limit as i
goes to infinity. Let {τi}

∞
i=1 be the sequence of best tours contained in the sequence of roadmaps {Ri}

∞
i=1,

respectively. Then the best tour cost C(τi) approaches a global optimum, i.e.,

lim
i→∞

C(τi) = inf
τ∈V(T1)×···×V(Tn)

C(τ). (8)

Proof. To prove Eq. 8 it suffices to show that for all ǫ > 0 there exists N such that i > N implies

C(τi) ≤ inf
τ∈V(T1)×···×V(Tn)

C(τ) + ǫ. (9)

By definition of infimum, there exists a sequence of tours {τ ′j}
∞
j=1 in V(T1) × · · · × V(Tn) such that

lim
j→∞

C(τ ′j) = inf
τ∈V(T1)×···×V(Tn)

C(τ),

i.e., for all ǫ > 0 there exists N1 such that j > N1 implies

C(τ ′j) ≤ inf
τ∈V(T1)×···×V(Tn)

C(τ) +
ǫ

2
. (10)

The general position assumption (specifically the absence of degeneracy per Def. IV.3) implies that for each
τ ′j and ǫ > 0 there exists an open set Aj ⊂ V(T1)×· · ·×V(Tn) such that supτ ′∈Aj

C(τ ′) ≤ C(τ ′j)+
ǫ
2 . Because

the roadmap poses are sampled densely in the limit, we can always find an N2 large enough that each Ri

contains a tour τi in the open set Aj for all i > N2, hence

C(τi) ≤ C(τ ′j) +
ǫ

2
(11)

whenever i > N2. Combining Eq. 10 and 11, we obtain the desired result that for all ǫ > 0 there exists
N = max{N1, N2} such that i > N implies

C(τi) ≤ C(τ ′j) + ǫ
2

≤ infτ∈V(T1)×···×V(Tn) C(τ) + ǫ
2 + ǫ

2

= infτ∈V(T1)×···×V(Tn) C(τ) + ǫ.
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Theorem IV.6 (Entry Pose Roadmap Convergence). Let V(T1), . . . ,V(Tn) be visibility regions constituting
a PVDTSP instance in general position. Let {Ri}

∞
i=1 be a sequence of roadmaps constructed according to

Def. III.3 such that the vertices of Ri are dense in the entry pose sets V̌(T1), . . . , V̌(Tn) in the limit as i
goes to infinity. Let {τi}

∞
i=1 be the sequence of best tours contained in the sequence of roadmaps {Ri}

∞
i=1,

respectively. Then the best tour cost C(τi) approaches a global optimum among all tours which pass through
the boundary of every visibility region, i.e.,

lim
i→∞

C(τi) = inf
τ∈∂V(T1)×···×∂V(Tn)

C(τ). (12)

Proof. To prove Eq. 12 it suffices to show that for all ǫ > 0 there exists N such that i > N implies

C(τi) ≤ inf
τ∈∂V(T1)×···×∂V(Tn)

C(τ) + ǫ. (13)

By definition of infimum, there exists a sequence of tours {τ ′j}
∞
j=1 in ∂V(T1) × · · · × ∂V(Tn) such that

lim
j→∞

C(τ ′j) = inf
τ∈∂V(T1)×···×∂V(Tn)

C(τ),

i.e., for all ǫ > 0 there exists N1 such that j > N1 implies

C(τ ′j) ≤ inf
τ∈∂V(T1)×···×∂V(Tn)

C(τ) +
ǫ

2
. (14)

The general position assumption (specifically the absence of degeneracy per Def. IV.4) implies that for each
τ ′j and ǫ > 0 there exists an open set Aj ⊂ V̌(T1)×· · ·×V̌(Tn) such that supτ ′∈Aj

C(τ ′) ≤ C(τ ′j)+
ǫ
2 . Because

the roadmap poses are sampled densely in the limit, we can always find an N2 large enough that each Ri

contains a tour τi in the open set Aj for all i > N2, hence

C(τi) ≤ C(τ ′j) +
ǫ

2
(15)

whenever i > N2. Combining Eq. 14 and 15, we obtain the desired result that for all ǫ > 0 there exists
N = max{N1, N2} such that i > N implies

C(τi) ≤ C(τ ′j) + ǫ
2

≤ infτ∈∂V(T1)×···×∂V(Tn) C(τ) + ǫ
2 + ǫ

2

= infτ∈∂V(T1)×···×∂V(Tn) C(τ) + ǫ.

The resolution completeness of our algorithms now follows directly from the roadmap convergence theo-
rems.

Corollary IV.7 (Resolution Completeness with Interior Pose Sampling). For a PVDTSP instance in general
position, suppose the algorithm PVDTSP SOLVE in Table 4 is executed for n̂samples = 1, 2, 3, . . ., each time
returning a tour τn̂samples

. Suppose further that

(i) for the ROADMAP function on line 1, a roadmap construction as per Def. III.3 is used which samples
poses densely in the visibility regions V(T1), . . . ,V(Tn) in the limit as n̂samples goes to infinity, e.g., the
INTERIOR POSE ROADMAP function in Table 2, and

(ii) the function ATSP SOLVE on line 3 always returns an exact solution.

Then the best tour cost C(τn̂samples
) approaches a global optimum, i.e.,

lim
n̂samples→∞

C(τn̂samples
) = inf

τ∈V(T1)×···×V(Tn)
C(τ). (16)

Proof. It is proven in Ref. 21 that the Noon-Bean transformation is exact in the sense that if the exact
solution of the ATSP instance is found, then the extracted solution to the FOTSP instance will also be
exact. This means the method will always find the best tour in a given roadmap. The corollary thus follows
directly from the roadmap convergence Theorem IV.5.
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Corollary IV.8 (Resolution Completeness with Entry Pose Sampling). For a PVDTSP instance in general
position, suppose the algorithm PVDTSP SOLVE in Table 4 is executed for n̂samples = 1, 2, 3, . . ., each time
returning a tour τn̂samples

. Suppose further that

(i) for the ROADMAP function on line 1, a roadmap construction as per Def. III.3 is used which samples
poses densely in the entry pose sets V̌(T1), . . . , V̌(Tn) in the limit as n̂samples goes to infinity, e.g., the
ENTRY POSE ROADMAP function in Table 2, and

(ii) the function ATSP SOLVE on line 3 always returns an exact solution.

Then the best tour cost C(τn̂samples
) approaches a global optimum among all tours which pass through the

boundary of every visibility region, i.e.,

lim
n̂samples→∞

C(τn̂samples
) = inf

τ∈∂V(T1)×···×∂V(Tn)
C(τ). (17)

Proof. Follows directly from the roadmap convergence Theorem IV.6 as Corollary IV.7 followed from Theo-
rem IV.5.

Corollaries IV.7 and IV.8 are valid for any roadmap constructions which sample densely on the visi-
bility sets, resp. entry pose sets. Instead of uniform grids, one could sample, e.g., randomly or quasiran-
domly.23,24,35

IV.C. Time Complexity

The convergence results in Sec. IV.B show that the tour returned by our algorithm PVDTSP SOLVE con-
verges to a global optimum, but they tell us nothing about the rate of convergence. In particular, we have
no way of knowing how many samples are necessary in order to guarantee the tour returned comes within a
prescribed tolerance of the global optimum. In this respect, the utility of the convergence theorems is more
conceptual than practical and it remains an important open problem to prove the rate of convergence. In fact,
convergence rates are not known for a number of state-of-the-art sampling-based roadmap methods in the
literature, yet these methods perform compellingly well in practice.24,36 That the PVDTSP is NP-hard also
indicates that there can be no polynomial time complexity guarantees. Despite all this, we are able to provide
an estimate of time complexity as a function of the input parameter n̂samples, and numerical experiments in
Sec. V show the algorithms perform very well in practice. We derive the estimate by assuming an ATSP
instance with nV vertices can be solved in time O(n2.2

V ). This is the empirically determined average-case
time complexity of state-of-the-art heuristic ATSP solvers based on the Lin-Kernighan heuristic.29,31,37

Proposition IV.9 (Time Complexity). Suppose whenever we execute the algorithm
PVDTSP SOLVE in Table 4 it holds that

(i) n≪ n̂samples,

(ii) n̂samples ≈ nsamples,

(iii) the number of vertices representing each polygon is upper boundedl,

(iv) the roadmap is constructed using INTERIOR POSE ROADMAP in Table 2 or
ENTRY POSE ROADMAP in Table 3, and

(v) an ATSP solver based on the Lin-Kernighan heuristic, e.g., LKH 29 or Linkern.30 is able to solve
ATSP instances with nV vertices in time O(n2.2

V ).

Then the time complexity of PVDTSP SOLVE is

O(n̂2.2
samples). (18)

lIn the examples we considered, the number of vertices representing any polygon never exceeded 20.
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Proof. We first examine the INTERIOR POSE ROADMAP pseudocode Table 2. Computing the area and
bounding box of a single polygon takes time linear in its number of vertices,28 which we assumed con-
stant. These computations are performed for n polygons, so lines 1-6 take time O(n). Lines 7-9 makes
roughly O(nsamples) constant-time insertions into G and therefore takes O(nsamples) time. We know these
insertions take roughly constant time for us because (1) checking inclusion in a polygon28 is linear in its
number of its vertices, and (2) the fraction of rejected samples is proportional to the ratio of polygon area
to bounding box area, which is fixed. On lines 10-15, the O(n2

samples) edges of a nearly complete graph
are inserted, each in constant time. This last term dominates, hence we expect the time complexity of
INTERIOR POSE ROADMAP to be O(n2

samples).
We turn our attention to the ENTRY POSE ROADMAP pseudocode Table 3. Computing the perimeter

length of n polygons takes O(n) time (line 2). The cluster sampling on lines 4-7 makes no rejections, so
O(nsamples) constant-time insertions take O(nsamples) time. On lines 8-13, the O(n2

samples) edges of a nearly
complete graph are inserted, each in constant time. This last term dominates, hence we expect the time
complexity of ENTRY POSE ROADMAP to be O(n2

samples).
Finally, we examine the PVDTSP SOLVE pseudocode Table 4 itself. As we have just seen, building the

roadmap (line 1) takes time O(n2
samples). The Noon-Bean transformation (line 2) also takes time O(n2

samples)

because it adds only nsamples zero-weight edges, but modifies one at a time the other O(n2
samples) edges.

Under assumption (v), the ATSP on line 3 can be solved in time O(n2.2
samples). Extracting the PVDTSP

solution (lines 4-8) from the ATSP solution takes only O(nsamples) time.
Of all the operations in PVDTSP SOLVE, solving the ATSP dominates, hence the time complexity is

O(n2.2
samples), or O(n̂2.2

samples) assuming n̂samples ≈ nsamples.

V. Numerical Study

We have implemented the algorithms of Sec. III in C++ on a 2.33 GHz i686. For solving ATSP instances,
our implementations call the powerful LKH29 solver as a subroutine. Out of several dozen problem instances
we experimented with, the results from three representative examples are shown in Table 5 and Fig. 8, 9, and
10. In all examples the aircraft minimum turn radius was rmin = 3 m. We tested many different values of the
parameter α ranging from 0 to 6 and found that α = 2.2 was best when using INTERIOR POSE ROADMAP
and α = 2.85 was best when using ENTRY POSE ROADMAP. While no α values are optimal for all problem
instances, these “best” values were found by averaging those values which resulted in fastest convergence
over a dozen typical-case problem instances. Using these best parameter values, we ran each algorithm over
a range of sample counts for each instance. As predicted by Corollaries IV.7 and IV.8, the algorithms appear
to converge in the plots of tour cost vs. number of samples.m All algorithms perform suitably quickly for
online purposes and the plots of computation time vs. sample count appear to be roughly quadratic, which
matches the predicted time complexity of Proposition IV.9. The plots also demonstrate that a user can
indirectly trade off computation time for solution quality by adjusting the number of samples.

To compare the algorithms, we considered each to have converged when the cost of the returned tour
changed less than 5% for 3 successive runs. Table 5 shows these converged values. PVDTSP solutions took
more time to compute than the DTSP solutions, but the PVDTSP solutions converged to substantially
smaller values. In fact, in the three examples in Table 5, the cost of the DTSP solutions are all at least 35%
greater than the cost of the respective PVDTSP solutions. Among the PVDTSP solutions, those found using
INTERIOR POSE ROADMAP were comparable in cost to those found using ENTRY POSE ROADMAP,
but the latter required significantly less computation time. In all examples we experimented with, using
PVDTSP SOLVE with ENTRY POSE ROADMAP instead of INTERIOR POSE ROADMAP consistently
reduced computation time by 50% or more. The problem instances we experimented with are the same
as those used for testing the genetic algorithm in Ref. 6. The genetic algorithm performed comparable to
PVDTSP SOLVE (with either INTERIOR POSE ROADMAP or ENTRY POSE ROADMAP) for around
5 targets, slightly worse for 10 targets, and much worse for 20+ targets. In conclusion, PVDTSP SOLVE
with ENTRY POSE ROADMAP is the best known algorithm for solving a PVDTSP instance where the
solution is guaranteed to pass through the boundary of every polygon. If the solution is not guaranteed to

mDespite the convergence, the plots of tour cost vs. sample count also show some slight nonmonotonicities. We attribute
these monotonicities to the fact that a uniform grid roadmap cannot contain another unless the former has more nodes by
a power of two. In other words, a roadmap with low resolution may by chance contain a very good solution while another
roadmap with higher resolution may not contain that same solution unless the resolution is double or more.

16 of 25

American Institute of Aeronautics and Astronautics



pass through the boundary of every polygon, then PVDTSP SOLVE with INTERIOR POSE ROADMAP
is best.

Table 5. Statistics from example solutions computed in C++ on a 2.33 GHz i686. Each algorithm was run over a
range of sample counts (cf. Fig. 8, 9, and 10). Each row in this table represents the first run for which the cost of the
returned tour changed less then 5% over the previous 3 consecutive runs.

Example Algorithm α n̂samples nsamples Computation Tour

Time Cost

Fig.08
5 targets

DTSP Solver from Ref. 19 N/A 120 120 0.30 s 55.9 m

PVDTSP SOLVE with 2.2 450 491 7.53 s 41.4 m

INTERIOR POSE ROADMAP

PVDTSP SOLVE with 2.85 350 350 3.50 s 37.5 m

ENTRY POSE ROADMAP

Fig.09
10 targets

DTSP Solver from Ref. 19 N/A 250 250 1.71 s 104.3 m

PVDTSP SOLVE with 2.2 550 623 16.27 s 73.8 m

INTERIOR POSE ROADMAP

PVDTSP SOLVE with 2.85 450 468 7.97 s 69.9 m

ENTRY POSE ROADMAP

Fig.010
20 targets

DTSP Solver from Ref. 19 N/A 350 360 4.72 s 194.3 m

PVDTSP SOLVE with 2.2 1000 1113 99.98 s 124.6 m

INTERIOR POSE ROADMAP

PVDTSP SOLVE with 2.85 550 708 29.80 s 128.4 m

ENTRY POSE ROADMAP

VI. Extensibility

VI.A. Handling Wind, Airspace Constraints, and Any Vehicle Dynamics

In Sec. II we formulated the minimum-time reconnaissance path planning problem as finding a sequence of
states (x1, . . . ,xn) from which the targets can be photographed. We assumed a minimum-time state-to-state
trajectory planner was available as a “black box” that could be accessed by our algorithms in order to evaluate
the distance function d(x,x′), which is all we need to evaluate the goodness of any candidate solution. In
this way, the minimum-time state-to-state trajectory planner is a module within our algorithms. We could
therefore use our algorithms with any of the minimum-time state-to-state trajectory planners available in
the literature. These include planners which can handle wind, no-fly zones, and any vehicle dynamics. The
literature on nonholonomic trajectory planning is vast, so we survey only briefly a few works most relevant.

Without obstacles or wind, the procedure for computing an optimal Dubins pose-to-pose path was shown
using geometric arguments in Ref. 3, then later more concisely using Pontryagin’s maximum principle from
optimal control in Ref. 27.nMore recently it has been shown that in a constant wind field without obstacles,
a shortest pose-to-pose Dubins path can be calculated in constant time to fixed precision.4,39,40 Using these
methods, pose-to-pose shortest path queries with no obstacles can be computed in constant time.

Given a polygonal environment with polygonal holes represented by a total of m vertices, the shortest
collision-free Euclidean path (no curvature constraint) can be calculated in O(m logm) time.41 Unfortu-
nately the same problem with a Dubins vehicle is NP-hard in m.42 However, much work has been done
to quickly find nearly optimal obstacle avoiding paths, surveyed further in Ref. 23, 24, 26. Trajectory plan-

nIt is a lesser known fact that the problem of finding bounded curvature paths was first studied by Markov in connection
with piecing together railroad tracks. An account of his results can be found in Ref. 38.
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ners specifically intended for fixed-wing UAVs, which use a branch and bound technique, are described in
Ref. 43, 44. Another approach to nonholonomic motion planning with obstacles is to use a MILP (Mixed
Integer Linear Program).45,46

VI.B. Open-Path vs. Closed-Tour Problems

In presenting our algorithms, we considered only closed-tour solutions to the reconnaissance UAV path
planning problem. One may alternatively wish to find an open reconnaissance path from a fixed initial pose
xinitial to a different fixed final pose xfinal. In this case, instead of the closed-tour cost function in Eq. 1, we
use the open path cost function

C(x1, . . . ,xn) = d(xinitial,x1) +

n−1
∑

i=1

d(xi,xi+1) + d(xn,xfinal).

The algorithms can be applied to open-path problems with only slight modification in how the roadmap
is constructed. The open-path roadmap has all the vertices and edges that the closed-tour roadmap of
Def. III.3 does, but in addition has two single-vertex clusters, one for the initial pose and one for the final
pose. The initial single-vertex cluster is connected by distance d-weighted edges outgoing to all vertices in
nondegenerate clusters. The final single-vertex cluster is connected (1) by a zero-weight edge outgoing to the
initial cluster vertex, and (2) by distance d-weighted edges incoming from all vertices in the nondegenerate
clusters.

VII. Conclusion

We have formulated the general aircraft visual reconnaissance problem for static ground targets in terrain
and shown that it can be reduced to a new variant of the Traveling Salesman Problem called the PVDTSP.
A worst-case analysis demonstrated the importance of developing specialized algorithms for the PVDTSP
in scenarios where targets are close together and polygons may overlap significantly. We designed two
algorithms for the PVDTSP. These sampling-based roadmap methods operate by sampling finite discrete
sets of poses in the target visibility regions in order to approximate a PVDTSP instance by an FOTSP
instance called the roadmap. Once a roadmap has been constructed, the algorithms apply the Noon-Bean
transformation to solve the FOTSP. Under certain technical assumptions, the algorithms are resolution
complete. The two algorithms differ only in how they sample poses to construct the roadmap. In the first
algorithm, poses are simply sampled in the interior of the visibility regions. The second algorithm, however,
samples entry poses. Sampling entry poses requires slightly stricter assumptions for resolution completeness,
but greatly reduces computation time. Numerical experiments indicate that our algorithms deliver very good
solutions suitably quickly for online purposes when applied to PVDTSP instances having up to about 20
targets. They significantly outperformed the alternative approaches of the genetic algorithm in Ref. 6 and
DTSP over target locations in Ref. 19. Additionally, our algorithms allow a means for a user to trade off
computation time for solution quality and their modular nature allows them to easily be extended to handle
wind, airspace constraints, any vehicle dynamics, and open-path (vs. closed-tour) problems.

While the algorithms we have presented are essentially ready to be fielded, there is much room for
future work. We are currently investigating extensions to multiple vehicles, constant factor approximation
guarantees, and a way to calculate how many samples a roadmap needs to guarantee a prescribed accuracy.
Aside from improvements to the existing algorithms, it would be interesting to numerically evaluate hybrid
approaches.
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Figure 4. Roadmap constructions for (a) the DTSP through target positions, (b) the PVDTSP with interior pose
sampling, and (c) the PVDTSP with entry pose sampling. Sampled poses are represented by black arrows. In each
case, a uniform grid is first constructed according to specified spacings (left), then the grid samples are connected by
minimum-time Dubins paths (blue curves, right). To reduce clutter, only a representative subset of all connections are
shown in (b) and (c). The best tours extracted from these roadmaps are shown in Fig. 5.
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(a) (b) (c)

Figure 5. The best tours extracted from the roadmaps shown in Fig. 4a, b, and c, respectively. In (a) the DTSP tour
is restricted to pass directly over the target locations (black disks), but the PVDTSP tours in (b) and (c) exploit the
freedom of the visibility sets.

Figure 6. An example of a PVDTSP instance which is both interior pose and entry pose degenerate. The globally
optimal solution τ∗ is a minimum turn radius circle (blue) which just grazes the outside corners of the triangular
visibility regions. Any tour τ 6= τ∗ would have to veer away from the visibility regions and then come back in order to
visit them all. The cost C(τ) is thus bounded away from C(τ∗).

(a) (b) (c) (d)

Figure 7. A grid sampling strategy is used to minimize the function f in Eq. 7 over a square. The performance of the
strategy depends on the relative configurations of the unit disk and square. If (a) the disk and square don’t intersect or
(b) their intersection contains an open set, then the value returned by the sampling strategy is guaranteed to approach
the optimum as the grid becomes finer. If, however, the problem is degenerate due to (c) tangency or (d) corner point
intersection, then the sampling strategy will not find the optimum no matter how fine the grid is.
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Figure 8. Example PVDTSP instance with n = 5 targets and aircraft minimum turn radius rmin = 3 m. Solutions were
computed using the sampling-based DTSP solver from Ref. 19, PVDTSP SOLVE with INTERIOR POSE ROADMAP
(α = 2.2), and PVDTSP SOLVE with ENTRY POSE ROADMAP (α = 2.85). (a) Black dots represent target locations.
Green polygons represent the target visibility regions. The dashed blue curve shows the best tour found by the DTSP
solver. The solid blue curve shows the best tour found by PVDTSP SOLVE using ENTRY POSE ROADMAP. The best
solution found using INTERIOR POSE ROADMAP is nearly identical to that found using ENTRY POSE ROADMAP
and hence is not shown. (b,c) Tour costs and computation times for each of the algorithms over a range of sample
counts. Cf. Table 5.
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Figure 9. Example PVDTSP instance with n = 10 targets and aircraft minimum turn radius rmin = 3 m. Solutions
were computed using the DTSP solver from Ref. 19, PVDTSP SOLVE with INTERIOR POSE ROADMAP (α = 2.2),
and PVDTSP SOLVE with ENTRY POSE ROADMAP (α = 2.85). (a) Black dots represent target locations. Green
polygons represent the target visibility regions. The dashed blue curve shows the best tour found by the DTSP solver.
The solid blue curve shows the best tour found by PVDTSP SOLVE using ENTRY POSE ROADMAP. The best
solution found using INTERIOR POSE ROADMAP is nearly identical to that found using ENTRY POSE ROADMAP
and hence is not shown. (b,c) Tour costs and computation times for each of the algorithms over a range of sample
counts. Cf. Table 5.
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Figure 10. Example PVDTSP instance with n = 20 targets and aircraft minimum turn radius rmin = 3 m. Solutions
were computed using the DTSP solver from Ref. 19, PVDTSP SOLVE with INTERIOR POSE ROADMAP (α = 2.2),
and PVDTSP SOLVE with ENTRY POSE ROADMAP (α = 2.85). (a) Black dots represent target locations. Green
polygons represent the target visibility regions. The dashed blue curve shows the best tour found by the DTSP solver.
The solid blue curve shows the best tour found by PVDTSP SOLVE using ENTRY POSE ROADMAP. The best
solution found using INTERIOR POSE ROADMAP is nearly identical to that found using ENTRY POSE ROADMAP
and hence is not shown. (b,c) Tour costs and computation times for each of the algorithms over a range of sample
counts. Cf. Table 5.
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