
January 8, 2011 16:54 WSPC/Guidelines main

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

A COMPLETE ALGORITHM FOR SEARCHLIGHT SCHEDULING

KARL J. OBERMEYER ANURAG GANGULI FRANCESCO BULLO

Center for Control, Dynamical Systems, and Computation,

University of California at Santa Barbara,

Santa Barbara, CA 93106, USA

karl.obermeyer@gmail.com, anurag.ganguli@gmail.com, bullo@engineering.ucsb.edu

Received Oct. 2008
Revised Oct. 2010

Communicated by Kokichi Sugihara

This article develops an algorithm for a group of guards statically positioned in a non-
convex polygonal environment with holes. Each guard possesses a single searchlight, a
ray sensor which can rotate about the guard’s position but cannot penetrate the bound-

ary of the environment. A point is detected by a searchlight if and only if the point is on
the ray at some instant. Targets are points which move arbitrarily fast. The objective of
the proposed algorithm is to compute a schedule to rotate a set of searchlights in such
a way that any target in an environment will necessarily be detected in finite time. This
is known as the Searchlight Scheduling Problem and was described originally in 1990
by Sugihara et al. We take an approach known as exact cell decomposition in the mo-
tion planning literature. The algorithm operates by decomposing the searchlights’ joint

configuration space and the environment, and then by constructing a so-called informa-
tion graph. Searching the information graph for a path between desired states yields
a search schedule. We also introduce a new problem called the φ-Searchlight Schedul-

ing Problem in which φ-searchlights sense not just along a ray, but over a finite field

of view. We show that our results for searchlight scheduling can be directly extended
for φ-searchlight scheduling. Proofs of completeness, complexity bounds, and computed
examples are presented.

Keywords: searchlight scheduling; visibility; pursuit-evasion; computational geometry;
exact cell decomposition; motion planning.

1. Introduction

Consider a group of point guards statically positioned in a nonconvex polygonal

environment with holes, e.g., a floor plan. Each guard is equipped with a single

searchlight, a ray sensor which can rotate about the guard’s position but cannot

penetrate the boundary of the environment (imagine a ray of light such as a laser

range finder, or a camera with a very narrow field of view). A searchlight aims only

in one direction at a time and cannot penetrate the boundary of the environment,

but its direction can change continuously. A point is detected by a searchlight at

some instant if and only if the point lies on the ray. Targets are points which move

arbitrarily fast. The Searchlight Scheduling Problem is to

1

January 8, 2011 16:54 WSPC/Guidelines main

2 Obermeyer, Ganguli and Bullo

(c)

(b)

(d)

(a)

Fig. 1. A simple example of a searchlight schedule. “Clear” regions where no undetected evader
could exist are shown in gray. From (a) to (d): First the lower searchlight aims at the upper
searchlight and sweeps until it hits a corner where its visibility is occluded. Next, the upper
searchlight sweeps the area the lower searchlight cannot see. Finally, the lower searchlight continues

sweeping the remainder of the environment. No target, no matter how fast, would be able to avoid
detection by this rotation sequence.

Find a schedule to rotate a set of stationary searchlights such that

any target in an environment will necessarily be detected in finite

time.

A searchlight problem instance consists of an environment together with a set of

stationary sensor positions. Obviously there can only exist a search schedule if all

points in the environment are visible from some guard. For a graphical description

of our objective see Fig. 1.

To our knowledge the Searchlight Scheduling Problem was first introduced by

Sugihara, Suzuki and Yamashita.1 They give a solution, the “One Way Sweep Strat-

egy”, to the limited class of searchlight scheduling problem instances in which the

environment is simply connected and there is at least one searchlight located on

the boundary for every connected component of their visibility graph. In Ref. 2, a

linear time algorithm is given for finding searchlight schedules in the special case

of polygons with searchlights on the boundary and no holes. Ref. 3 gives upper

bounds on the number of guards with multiple searchlights sufficient in polygonal

environments containing holes. We adopt the convention in Ref. 3 and call a mobile

guard possessing k searchlights a k-searcher. Some articles involving 1-searchers,

sometimes calling them flashlights or beam detectors, are Ref. 4, 5, 6, and 7. Closely

related is the Classical Art Gallery Problem, namely that of finding a minimum set

of guards (with omnidirectional vision) such that the entire polygon is visible. There

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 3

are many variations on the art gallery problem which are wonderfully surveyed in

Ref. 8, 9, and 10. With an emphasis on practical imaging considerations, Ref. 11

describes a centralized task-specific procedure for choosing the locations of cameras

in a network. As described in Ref. 12 and 13, there are distributed algorithms for

deploying guards into simple polygons such that their final positions are a solution

to the art gallery problem. We later used these ideas in Ref. 14 for distributed de-

ployment of agents such that the agents are able to execute a searchlight schedule

in an asynchronous distributed manner from their final positions.

Exact cell decomposition, a method we use in the present article, has been used

in the design of complete algorithms to solve visibility-based pursuit-evasion prob-

lems before, e.g., in Ref. 15 and 4. Ref. 15 gives an algorithm for a single mobile

searcher with omnidirectional vision, and it is shown that determining the minimum

number of such pursuers required to clear a polygonal environment with holes is

NP-hard. Ref. 4 describes a complete algorithm for a single mobile “φ-searcher”

having an angle φ field of view, and it is shown that determining the minimum

number of such pursuers required to clear a polygonal environment with holes is

also NP-hard. Due to anticipated computational complexity, both articles, perhaps

appropriately, dismiss the idea of using a complete exact cell decomposition for the

case of multiple searchers, although they do implement incomplete extensions which

they claim work well for practical purposes. It is suggested on page 569 of Ref. 16

that implementation of a complete exact cell decomposition algorithm for multiple

pursuers would be further complicated because “some of the cell boundaries are

algebraic surfaces due to complicated interactions between the visibility polygons

of different pursuers.” To our knowledge nobody has carried out the design of a

complete algorithm to solve any visibility-based pursuit-evasion problem involv-

ing arbitrary polygonal environments with holes. However, there are at least two

noteworthy articles involving multiple pursuers in polygonal environments without

holes. Ref. 17 provides a polynomial time complete algorithm for two 1-searchers

in a simple polygonal environment, but has not been extended to three or greater

pursuers and it is not clear how to do so. Ref. 18 gives a polynomial time complete

algorithm to determine the minimum number of ∞-searchers (omnidirectional vi-

sion) necessary to clear a simple polygon, but under the constraints that (1) the

pursuers are in a chain configuration where consecutive pursuers along the chain

are mutually visible, and (2) end pursuers must remain on the polygon boundary.

There are three main contributions in this article. First, we show by exact cell

decomposition that if an instance of the Searchlight Scheduling Problem permits

any solution at all, then it also permits a solution in a reduced discrete solution

space. The second contribution is to use the knowledge of the solution space dis-

cretization to design a completea algorithm for searchlight scheduling. Although it

remains an open problem whether searchlight scheduling is NP-hard, our computed

aHere complete means that if a solution exists, the algorithm is guaranteed to find one in finite
time.

January 8, 2011 16:54 WSPC/Guidelines main

4 Obermeyer, Ganguli and Bullo

examples demonstrate that for searchlights, even in environments with holes, the

time complexity of a complete exact cell decomposition is not entirely prohibitive

and can be practical for problem instances of useful size. To accomplish this, we con-

struct our cell decomposition dependent on the pursuer positions so that there is no

need to explicitly compute any algebraic surfaces. At this time no other algorithm

exists to solve the general Searchlight Scheduling Problem. As a third contribu-

tion we treat a new problem which we call the φ-Searchlight Scheduling Problem

in which φ-searchlights sense not just along a ray, but over a finite field of view

(see Fig 13). We show how our searchlight scheduling algorithm can be extended

to take advantage of φ-searchlights having a wider field of view than just a ray.

This is an important extension because for cameras having a finite field of view it

is a much more realistic sensor model. We envision our algorithms and/or other

algorithms inspired by this work will one day be used in automating the design of

security systems consisting of networks of statically positioned rotating sensors and

actuators.

This article is organized as follows. Section 2 covers preliminary notation, tech-

nical definitions, and statement of assumptions. Section 3 provides an extensive

theoretical development which culminates in a proof showing a reduction of the

searchlight scheduling solution space. The solution space reduction guarantees the

completeness of our algorithm, which we present in Section 4. In Section 5 we

introduce the φ-Searchlight Scheduling Problem and explain how our results for

searchlight scheduling can be directly extended for φ-searchlights. We conclude in

Section 6.

2. Preliminaries

2.1. Notation

We begin by introducing some basic notation. We let R and T
d represent the set

of real numbers and the d-dimensional torus, respectively. Clockwise is abbreviated

by cw, and counterclockwise by ccw. Given two points a, b ∈ R
2, we let [a, b] signify

the closed segment between a and b. Similarly,]a, b[is the open segment between a

and b, [a, b[represents the set]a, b[∪{a} and]a, b] is the set]a, b[∪{b}. Given a set

(resp. list) A, |A| denotes the cardinality of the set (resp. list), A◦ the interior, Ā

the closure, and ∂A the boundary. Also, we shall use P to refer to tuples of elements

in R
2 of the form (p[0], . . . , p[N−1]) (these will be the locations of the searchlights),

where N denotes the total number of searchlights.

We turn our attention to the environments we are interested in and to the

concepts of visibility in such environments. The environment, denoted by E , is closed

and consists of an (outer) polygon containing polygonal holes. The boundaries of

these polygons do not intersect themselves or each other. Throughout this article,

n will refer to the number of edges of E (holes included) and r the number of reflex

vertices. A reflex vertex is constituted by any concave vertex of the outer polygon

or convex vertex of a hole. A point q ∈ E is visible from p ∈ E if [p, q] ⊂ E . The

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 5

visibility set V(p) ⊂ E from a point p ∈ E is the set of points in E visible from

p. A visibility gap of a point p ∈ E is defined as any line segment [a, b] such that

]a, b[⊂ E◦, [a, b] ⊂ ∂V(p), and it is maximal in the sense that a, b ∈ ∂E . Intuitively,

visibility gaps form the border between portions of E visible from p and portions of

E not visible from p.

Now we introduce some notation and definitions specific to the Searchlight

Scheduling Problem. An instance of the Searchlight Scheduling Problem is spec-

ified by a pair (E , P), where E is an environment and P is a set of searchlight

locations in E . For convenience, we will refer to the ith searchlight as s[i] (which is

located at p[i] ∈ R
2), and S = {s[0], . . . , s[N−1]} will be the set of all searchlights.

We let θ[i] denote the configuration angle of the searchlight in radians from the

positive horizontal axis, and Θ = {θ[0], . . . , θ[N−1]} denote the joint configuration.

So, if we say, e.g., aim s[i] at point e, what we really mean is set θ[i] equal to an

angle such that the ith searchlight is aimed at e. Note that searchlights do not block

visibility of other searchlights.

The next few definitions are similar to those in Ref. 1.

Definition 1 (Schedule). Let [0, T] be a finite interval of real time. A schedule

of a searchlight θ[i](t) ∈ Θ(t) is a continuous function θ[i] : [0, T] → T
1 such that

s[i] changes direction of rotation at most a finite number of times.

The requirement that no searchlight switches direction of rotation an infinite

number of times is important for practical realizability.

Definition 2 (Active). Searchlight s[i] is active at time t if it is rotating (has

nonzero angular velocity), otherwise it is inactive.

The ray of s[i] at time t ∈ [0, T] is the intersection of V(p[i]) and the semi-infinite

ray starting at p[i] with direction θ[i](t). Searchlight s[i] is said to be aimed at a

point e ∈ E at some time instant if e is on the ray of s[i]. A point e is illuminated

if there exists a searchlight aimed at e.

Definition 3 (Separability). Two points in E are separable at time t ∈ [0, T] if

every continuous path connecting them in the interior of E contains an illuminated

point, otherwise they are nonseparable. Two regions R1 and R2 in E are separable

if every pair of points e1 ∈ R1 and e2 ∈ R2 are separable.

Definition 4 (Contamination and Clarity). A point e ∈ E is contaminated at

time zero if and only if it is not illuminated. The point e is contaminated at time

t ∈]0, T] if and only if there exists a continuous function f : [0, t] → E such that

f(t) = e and for every instant t′ ∈ [0, t], f(t′) is not illuminated by any searchlight.

A point which is not contaminated is called clear. A region is said to be contaminated

if it contains a contaminated point, otherwise it is clear.

Definition 5 (Search Schedule). Given E and a set of searchlight locations

P = {p[0], . . . , p[N−1]}, a schedule Θ(t) = {θ[0](t), . . . , θ[N−1](t)} : [0, T] → T
N is a

search schedule for (E , P) if E is clear at T .

January 8, 2011 16:54 WSPC/Guidelines main

6 Obermeyer, Ganguli and Bullo

2.2. Assumptions

The following main assumptions will be made about every problem instance in this

article:

(i) The environment is static and has a finite number of vertices.

(ii) Every point in the environment is visible from some searchlight and there is a

finite number N of searchlights.

Comments: If there were some point in the environment not visible from any

searchlight, then a target could remain there undetected for all time.

(iii) No two searchlights are co-located.

(iv) All searchlights are switched on at all times, even when rotating.

Comments: Leaving inactive searchlights switched on can only increase, and not

decrease the chance of detecting an evader. One might argue that leaving a

sensor switched on could be costly, e.g., from an energy standpoint, but we are

not considering such things in our solution.

3. Reducing the Solution Space

The solution space of the Searchlight Scheduling Problem is the set of all possible

schedules. This section focuses on defining several special classes of schedules and

showing that the existence of a search schedule in the most general continuous class

implies the existence of a search schedule in a reduced discrete class which can

be searched for a solution. This is accomplished by an exact cell decomposition of

the searchlights’ joint configuration space (TN). Our algorithm in Section 4 and its

completeness will follow directly from the solution space reduction.

At any instant of a schedule, searchlights are aimed in various directions so that

their beams separate (in the sense of Definition 3) the environment E into a set of

distinct polygonal regions (possibly containing holes) each of which is either entirely

clear or entirely contaminated. We formalize this.

Definition 6 (Maximal Nonseparable Region). For a fixed searchlight con-

figuration Θ and an unilluminated point e ∈ E , the equivalence class of all points

in E which are nonseparable from e is called a maximal nonseparable region.

At any time during a schedule there is a finite number of maximal nonseparable

regions. As an example, in Fig. 1(c) there are 4 maximal nonseparable regions, 3 of

which are clear.

Definition 7 (Support). If a portion of a searchlight’s beam forms part of the

boundary of a maximal nonseparable region, then that searchlight is said to support

that maximal nonseparable region. The set of all searchlights whose beams form the

boundary of a maximal nonseparable region is called the support of that maximal

nonseparable region.

The support of a maximal nonseparable region changes, in general, over the

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 7

course of a schedule. As a schedule is executed, maximal nonseparable regions, in

addition to continuously deforming, may undergo any of the following changes:

Disappear : A maximal nonseparable region disappears if and only if its area goes

to zero. This can happen if one or more searchlights rotate (i) into ∂E , (ii) into

coincidence with another searchlight’s beam, (iii) onto the intersection of other

searchlights’ beams, or (iv) onto the intersection point of another searchlight’s

beam with ∂E . The only way to clear a contaminated maximal nonseparable

region is to make it disappear. Examples are shown in Fig 2.

Appear : The reverse of disappear. Note any maximal nonseparable region which

appears remains clear until merging with a contaminated region.

Merge: Two or more maximal nonseparable regions can merge into one if a search-

light rotates (i) past a reflex vertex of ∂E where its visibility is occluded, (ii)

away from a reflex vertex which it was grazing, or (iii) past another searchlight

not on ∂E . Examples are shown in Fig. 3. A clear maximal nonseparable region

can become contaminated only by merging with a contaminated region.

Split : The reverse of merge.

Indeed, any possible change to a maximal nonseparable region will fall under one

of the above categories. To describe the entire system evolution precisely, we say

at time t it possesses an information state which consists of the searchlights’ joint

configuration Θ(t) ∈ T
N together with the contamination state C(t) of the envi-

ronment E . By contamination state is meant an encoding of which points in E are

contaminated, e.g., a binary labeling of the maximal nonseparable regions (0 for

clear, 1 for contaminated). We denote the information state by a pair (Θ(t), C(t)),

or by (Θ, C) when the time is implicitly understood. Note, however, that the con-

cept of information state has no intrinsic dependence on time, so we may also speak

of the information state of a searchlight system without it being associated with

any particular schedule. The information state takes on a value in a continuous

information space I. To every searchlight schedule corresponds a unique trajectory

through I, thus a search schedule can simply be viewed as an information space tra-

jectory which begins with a completely contaminated information state and ends

with a completely clear information state. Ultimately we will discretize the con-

tinuous information space I into a so-called information graph GI which can be

searched systematically for a searchlight rotation schedule. We delay discussing the

information graph further until Section 4.

The definitions to follow will allow us to describe the exact cell decomposition

of the searchlight configuration space (TN).

Definition 8 (Critical Angle). An angle ψ is a critical angleb of s[i] if θ[i] = ψ

bThanks to Howie Choset for pointing out the appropriateness of the name “critical angle”. Taking
the origin at a searchlight, its beam can be viewed as a level set of the Morse function h(x, y) =
tan(y/x) so that the critical angles are where h(x, y) has a critical point (constituted by a reflex
vertex of ∂E or a searchlight in the interior of E). See Ref. 19, 20.

January 8, 2011 16:54 WSPC/Guidelines main

8 Obermeyer, Ganguli and Bullo

(a)

s[0] R

(b)

s[0] s[1]

R

Fig. 2. How a maximal nonseparable region R can be made to disappear by a single searchlight
s[0] rotating as indicated in each case by the smaller arrow. The thick line segments may represent
either portions of ∂E or other searchlight beams. In this way, (a) could depict s[0] rotating either
into ∂E, or into coincidence with another searchlight’s beam. Likewise, (b) could depict s[0] rotating

either onto the intersection of other searchlights’ beams, or onto the intersection point of another
searchlight’s beam with ∂E.

(a)

R2

R1

s[1]

s[0]

(b)

R1

R2

s[1]

s[0]

(c)

R2

R1s[0]

s[1]

s[2]

Fig. 3. The only manner in which two or more maximal nonseparable regions can merge into one
is by some searchlight rotating either (a) past a reflex vertex of ∂E where its visibility is occluded,
(b) away from a reflex vertex which it was grazing, or (c) past another searchlight not on ∂E. In
each example the clear region R1 will become contaminated when it merges with the contaminated
region R2. Note that in (a) and (b) the reflex vertex could have also been a flat edge (between
two reflex vertices) aligned with s[0]’s beam, but the effect is the same.

implies either

(i) s[i] is located on an edge (including endpoints) of ∂E and is aimed along that

edge,

(ii) s[i] is aimed at one of its visibility gaps,

(iii) s[i] is aimed at another visible searchlight, or

(iv) s[i] is aimed directly away from another visible searchlight.

Basic examples of critical angles are shown by the dashed lines in Fig. 4. More

complicated examples can be found in Figs. 10 and 11. A searchlight configuration

is a critical configuration if every searchlight is aimed along one of its critical angles.

An information state corresponding to searchlights in a critical configuration is a

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 9

(a) (b)

Fig. 4. Examples of critical angles: (a) Each searchlight has two critical angles aiming along the
adjacent walls and one aiming towards its visibility gap. (b) Each searchlight has two critical
angles, one pointing directly toward the other searchlight and one pointing directly away.

critical information state.

The next definition gives a useful notation for expressing the relationship be-

tween two information states with the same searchlight configuration but different

contamination states.

Definition 9 (Partial Ordering on Information States). Given two informa-

tion states (Θ1, C1) and (Θ2, C2), we write (Θ1, C1) � (Θ2, C2) if Θ1 = Θ2 and

every maximal nonseparable region which is clear in C1 is also clear in C2. If it is

understood from context that Θ1 = Θ2, then we simply write C1 � C2.

Definition 10 (Critical Intervals and Rectangles). Let ψ
[i]
j and ψ

[i]
k be either

adjacent or equal critical angles of s[i]. Then an angular interval λ[i] =]ψ
[i]
j , ψ

[i]
k [⊂ T

(resp. [ψ
[i]
j , ψ

[i]
k]) consisting of all angles which are

(i) between ψ
[i]
j and ψ

[i]
k , and

(ii) ccw from ψ
[i]
j to ψ

[i]
k

is an open critical interval (resp. closed critical interval) if λ[i] does not contain any

critical angles of s[i] (resp. other than ψ
[i]
j and ψ

[i]
k). The angles ψ

[i]
j and ψ

[i]
k are the

bounding angles of the critical interval. In the case ψ
[i]
j = ψ

[i]
k , λ[i] = {ψ

[i]
j } and λ[i]

is called a null critical interval. The Cartesian product Λ = λ[0]×· · ·×λ[N−1] ⊂ T
N

of critical intervals is a critical rectangle.

Definition 11 (Minimal Critical Rectangle). Given a searchlight configura-

tion Θ0 = {θ
[0]
0 , . . . , θ

[N−1]
0 }, the minimal critical rectangle Λ containing Θ0 is the

Cartesian product of critical intervals Λ = λ[0] × · · · × λ[N−1], where each λ[i]

(i = 0, . . . , N − 1) is the unique smallest critical interval containing θ
[i]
0 . If θ

[i]
0 is

a noncritical angle, then λ[i] is open. If θ
[i]
0 is critical, then λ[i] is a null (closed)

critical interval.

Remark 1. By Definition 11, the minimal critical rectangle Λ containing a search-

light configuration Θ0 is not necessarily closed or open. In particular, Λ is

January 8, 2011 16:54 WSPC/Guidelines main

10 Obermeyer, Ganguli and Bullo

(i) closed iff Θ0 is a critical configuration,

(ii) open iff in Θ0 no searchlight is aimed at a critical angle, or

(iii) neither open nor closed otherwise.

Lemma 1. Given a searchlight configuration Θ0, the minimal critical rectangle Λ

containing Θ0 is unique.

Proof. Letting Λ = λ[0] × · · · × λ[N−1] as in Definition 11, uniqueness of Λ follows

immediately from the uniqueness of each λ[i] (i = 0, . . . , N − 1).

If the searchlight configuration does not leave a minimal critical rectangle, then

by definition no merging can happenc. This gives the following lemma.

Lemma 2. Let Λ be the minimal critical rectangle containing some searchlight con-

figuration. Then any maximal nonseparable region which is cleared without leaving

Λ necessarily remains clear until Λ is left.

In fact we can make a slightly stronger statement as in the following two defini-

tions and lemma.

Definition 12 (Λ-equivalence of maximal nonseparable regions). Let Λ be

the minimal critical rectangle containing some searchlight configuration, and R and

R′ distinct maximal nonseparable regions present when the searchlight configuration

is somewhere in Λ̄. Then R and R′ are Λ-equivalent if it is possible for R and R′ to

merge without the searchlight configuration leaving Λ̄.

Definition 13 (modulo Λ-equivalence). Let Λ be the minimal critical rectan-

gle containing some searchlight configuration. When we say a property holds for

maximal nonseparable regions modulo Λ-equivalence, we intend the following. Any

Λ-equivalence class of maximal nonseparable regions, say {R0, R1, . . . , RM−1}, is to

be interpreted as a single maximal nonseparable region, say R, where

(i) the contamination state of R is taken to be the logical OR of the contamination

states of R0, R1, . . . , RM−1, and

(ii) the area of R is taken to be the sum of the areas of R0, R1, . . . , RM−1.

Definitions 12 and 13 are illustrated in Fig. 5. Roughly put, making a statement

about maximal nonseparable regions modulo Λ-equivalence amounts to ignoring the

splitting and merging which can happen when the searchlight configuration moves

between the minimal critical rectangle Λ and its relative boundary Λ̄ \ Λ.

Lemma 3. Let Λ be the minimal critical rectangle containing some searchlight

configuration. Then, modulo Λ-equivalence, any maximal nonseparable region which

is cleared without leaving Λ̄ necessarily remains clear until Λ̄ is left.

cIn this way, critical rectangles are reminiscent of the “conservative regions” defined in Ref. 15.

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 11

(b)(a)

R

s[1]

R′′

s[1]

s[0] s[0]

R′

Fig. 5. This example illustrates Definitions 12 and 13. Searchlights s[0] and s[1] have critical
angles along their walls and the dashed lines. Let Λ be the minimal critical rectangle containing
the noncritical configuration shown in (a). If the configuration moves to the relative boundary
Λ̄ \ Λ of Λ as in (b), then the maximal nonseparable region R splits into R′ and R′′. Likewise,

if the configuration were to move back to the relative interior of Λ, then R′ and R′′ could merge
back into R. The maximal nonseparable regions R′ and R′′ are thus Λ-equivalent. To consider a
maximal nonseparable region R modulo Λ-equivalence means to ignore the splitting and merging

which occurs when the configuration enters Λ̄\Λ. In this way, R would be identified here with the
union of R′ and R′′ and the contamination state of R would be 1 if and only if it were 1 for either
R′ or R′′.

Proof. A maximal nonseparable region can only be recontaminated by merging

with a contaminated maximal nonseparable region. However, if these two regions

merged without the searchlight configuration leaving Λ̄, then they must be Λ-

equivalent and therefore should be interpreted as a single contaminated maximal

nonseparable region.

Now we are ready to define the classes of schedules we are interested in.

Definition 14 (Classes of Schedules). A schedule is called

(i) sequential if only one searchlight is active at a time,

(ii) critical if searchlights only rotate between critical angles, i.e., while rotating

they never stop or change direction at a noncritical angle,

(iii) rotation-monotone if each searchlight is constrained to rotate either exclusively

cw or exclusively ccw,

(iv) contamination-monotone if no point in the environment changes contamination

state more than once, and

(v) general if it does not necessarily fall under any of the above special classes.

We have all but stated explicitly what the exact cell decomposition of the search-

lights’ joint configuration space (TN) is. The cells are precisely the set of all closed

critical rectangles of positive measure, i.e., those which are the Cartesian product of

non-null critical intervals (see example Fig. 6). This decomposition is exact in the

sense that for the Searchlight Scheduling Problem it suffices to consider only the

class of schedules which travel along cell boundaries, which is the class of critical

January 8, 2011 16:54 WSPC/Guidelines main

12 Obermeyer, Ganguli and Bullo

Fig. 6. For the simple problem instance of Fig. 4a, each of the 2 searchlights has 3 critical angles.
Together, these 6 critical angles define the exact cell decomposition of the searchlight configuration

space T
2 (shown embedded in R

3, thick black lines are the cell boundaries).

sequential schedules. This exactness will be captured rigorously in the main Theo-

rems 1, 2, and Corollary 1 at the end of this section, but first we require a few more

definitions and lemmas.

Definition 15 (Atomic and Critical Atomic Actions). Let A[i] denote a ro-

tation action by a searchlight s[i] from an angle αinit to an angle αfin, where αinit

and αfin may or may not be critical angles. A[i] is atomic if

(i) s[i] rotates monotonically cw or ccw without stopping, and

(ii) s[i] does not aim at any critical angle during the execution of the action except

possibly αinit and/or αfin.

If αinit and αfin are both critical angles, then A[i] is called a critical atomic action.

Simply put, a rotation action being atomic just amounts to the searchlight not

changing direction of rotation nor crossing a critical angle.

Definition 16 (Projections of Atomic Actions). Given an atomic action A[i]

there is a minimal critical interval λ[i] containing that action. The forward projection

of A[i], denoted Â[i], rotates s[i] over all of λ̄[i] by rotating in the same direction

as A[i]. The reverse projection of A[i], denoted Ǎ[i], rotates s[i] over all of λ̄[i] by

rotating in the direction opposing A[i]. See Fig. 7.

Lemma 4. Any sequential searchlight schedule can be written as a discrete sequence

of atomic rotation actions, i.e., a sequence of the form

{A
[im]
m }M−1

m=0 = A
[i0]
0 A

[i1]
1 A

[i2]
2 · · · A

[iM−1]
M−1 ,

where each A
[im]
m denotes an atomic rotation action by searchlight im.

Proof. Given a sequential schedule represented by a sequence of actions, any non-

atomic actions can be broken up into an appropriate number of atomic actions by

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 13

ψ
[i]
k

Ǎ[i]

Â[i]
ψ

[i]
j

αfin
A[i] αinit

s[i]

Fig. 7. The forward projection Â[i] and reverse projection Ǎ[i] of an atomic action A[i]. ψ
[i]
j

and ψ
[i]
k

signify the bounding critical angles of the minimal critical interval (λ[i] in Definition 16)

containing A[i].

splitting at the instances of time when a searchlight rotates over a critical angle or

changes rotation direction.

Lemma 5 (Schedule Decomposition into Time Intervals). For any general

search schedule Θ(t), t ∈ [0, T], there exists a unique finite increasing sequence of

times t0,0, t0,1, t0,2, . . . , t1,0, t1,1, t1,2, . . . , t2,0, t2,1, t2,2, . . . , tM,0, where

(i) t0,0 = 0 and tM,0 = T ,

(ii) the times {ti,j | i ∈ {1, . . . ,M − 1} and j = 0} correspond one-to-one to the

times other than 0 and T when there is a change in the minimal critical rect-

angle containing the searchlight configuration,d and

(iii) the times {ti,j | i ∈ {0, . . . ,M − 1} and j > 0} correspond one-to-one to the

times when one or more contaminated maximal nonseparable regions disappear

but there is not concurrently a change in the minimal critical rectangle contain-

ing the searchlight configuration.

Proof. Recall there are finitely many searchlights, each searchlight only has a finite

number of critical angles, and searchlights may change direction of rotation only a

finite number of times. From these observations, it is clear that the minimal critical

rectangle containing the searchlight configuration can only change a finite number

of times, i.e., M is finite. Finiteness of the subsequences ti,1, ti,2, ti,3, . . . (for i ∈

{0, 1, . . . ,M−1}) follows from the facts that (i) there are only finitely many maximal

nonseparable regions, and (ii) while the searchlight configuration remains in the

same minimal critical rectangle, any contaminated maximal nonseparable regions

which disappear cannot be recontaminated (see Lemma 2). Uniqueness follows from

the one-to-one correspondence between times and events.

dAt t0,0 = 0 and tM,0 = T there may or may not be a change in the minimal critical rectangle
containing the searchlight configuration.

January 8, 2011 16:54 WSPC/Guidelines main

14 Obermeyer, Ganguli and Bullo

Lemma 6. Let Λ be the minimal critical rectangle containing some searchlight

configuration. Then, modulo Λ-equivalence, the area of each maximal nonseparable

region is a continuous function of the searchlight configuration when restricted to

Λ̄.

Proof. We know from elementary geometry that the area of a polygon is a contin-

uous function of the coordinates of its vertices. Maximal nonseparable regions are

polygons whose vertices have the following property: the coordinates of the vertices

are continuous functions of the searchlight configuration.

Lemma 7. Suppose a maximal nonseparable region R can be made to disappear by

a single atomic action A[i] from a configuration Θ0 (cf Fig. 2). Let Θ1 be a configu-

ration of the searchlights identical to Θ0 except that s[i] is aimed at an angle in the

interior of the angular interval over which it sweeps according to A[i], and let Λ be

the minimal critical rectangle containing Θ1.
e Then the area of R is a monotonic

continuous function of each supporting searchlight’s configuration (holding all other

searchlights’ configurations fixed) while the configuration is restricted to Λ̄.

Proof. Observe that R cannot extend around a hole of E , otherwise some portion

of R would be invisible to s[i]. Also, there can be no searchlights located in the

interior of R, otherwise s[i] would have to rotate over another searchlight to clear

R (which would mean A[i] were not atomic). From these properties it follows, that

while the searchlights remain in Λ̄, two facts hold true: (i) the portion of R’s bound-

ary formed by its supporting searchlight beams must be convexf , and (ii) R must

lie entirely on one side of each supporting searchlight’s beam. If any supporting

beam rotates towards the interior of R, then R’s area must decrease. Likewise the

area increases if any supporting beam rotates away from the interior, so we have

established monotonicity. Continuity follows as in Lemma 6.

Theorem 1 (Reduction from General to Sequential). Any instance of the

Searchlight Scheduling Problem which permits a general search schedule also permits

a sequential search schedule.

Proof. Let Θ(t), t ∈ [0, T], be a general search schedule and

t0,0, t0,1, t0,2, . . . , t1,0, t1,1, t1,2, . . . , t2,0, t2,1, t2,2, . . . , tM,0

a sequence of times as described in Lemma 5. We say that a schedule Θ̃(t) emu-

lates another schedule Θ(t) over a time interval [tinit, tfin] if Θ̃(tinit) = Θ(tinit) and

eThe important feature of Λ is that if Λ′ is the minimal critical rectangle containing Θ0, then

Λ̄′ ⊂ Λ̄ and the searchlight configuration will remain in Λ̄ while s[i] executes A[i].
fBy “convex” we mean that when two searchlight beams form adjacent edges of R, then the interior
angle between those edges is less than π. The portion of R’s boundary formed by the environment
boundary may or may not be convex.

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 15

C̃(tinit) = C(tinit) implies (Θ̃(tfin), C̃(tfin)) � (Θ(tfin), C(tfin)). To prove the theo-

rem it suffices to show a sequential schedule Θ̃(t) can be constructed which emulates

Θ(t) over the time interval [0, T].

We first show that Θ(t) can be emulated by a sequential schedule over each time

interval of the form [ti,0, ti,0 + ǫ], i ∈ {0, 1, . . . ,M −1}, where ǫ ∈]0, ti,1 − ti,0[. This

is when merging can occur (review Fig. 3). Suppose we simply execute a sequence of

atomic actions A
[0]
0 A

[1]
1 A

[2]
2 · · · A

[N−1]
N−1 which rotates each searchlight directly from

θ[i](ti,0) to θ[i](ti,0 + ǫ), i ∈ {1, . . . , N}, one at a time in no particular order. It

suffices to guarantee such a sequence of atomic actions does not cause any maximal

nonseparable region, say R, to merge with a contaminated region, say R′, which

R did not merge with under Θ(t).g This is indeed the case, for suppose that R,

through A
[0]
0 A

[1]
1 A

[2]
2 · · · A

[N−1]
N−1 , does merge with such an R′. This is only possible

if the support of R changes to include a new beam that will cause the merge. The

only way to change the support of R in this manner is for one or more supporting

beams of R to cross the intersection of a combination of other searchlights’ beams

and ∂E . In such a case, it must be that R′ just appeared as an artifact of using the

sequence of atomic actions, thus R′ is clear (see examples in Fig. 8).

We next consider the existence of a sequential schedule to emulate Θ(t) only

during a time interval of the form [ti,0 + ǫ, ti+1,0], i ∈ {0, 1, . . . ,M − 1}, where

ǫ ∈]0, ti,1 − ti,0[. Let Λ be the minimal critical rectangle containing Θ(ti,0 + ǫ).

Recall that a maximal nonseparable region disappears if and only if its area goes to

zero and this area, modulo Λ-equivalence, is a continuous function of the searchlight

configuration when restricted to Λ̄ (see Lemma 6). Together with Lemmas 3, this

implies that all contaminated maximal nonseparable regions which are caused to

disappear by Θ(t) during (ti,0, ti+1,0) can also be made to disappear one at a time

by a sequential schedule. In particular, Θ(t) can be emulated over [ti,0 + ǫ, ti+1,0]

by any sequential schedule Θ̃(t) which visits successively the configurations Θ(ti,0 +

ǫ),Θ(ti,1),Θ(ti,2), . . . ,Θ(ti+1,0) without leaving Λ̄.h

We now know that the general schedule Θ(t) can be emulated by a sequen-

tial schedule Θ̃(t) over each interval [ti,0, ti+1,0], i ∈ {0, 1, . . . ,M − 1}, such that

Θ̃(ti+1,0) = Θ(ti+1,0). Therefore concatenating the sequential schedules produces a

sequential search schedule Θ̃(t) emulating Θ(t) over the duration [0, T].

Theorem 2 (Reduction from Sequential to Critical Sequential). Any in-

stance of the Searchlight Scheduling Problem which permits a sequential search

schedule also permits a critical sequential search schedule.

Proof. By Lemma 4 it suffices to show that given an atomic sequential sched-

ule, i.e., a search schedule written as a sequence of atomic actions {A
[im]
m }M−1

m=0 =

gIf multiple regions merge into one under Θ(t), then these regions may instead merge one at a

time when using A
[0]
0 A

[1]
1 A

[2]
2 · · · A

[N−1]
N−1 , but this does not affect our line of argument.

hIn our definition of emulation, it is only important to visit Θ(ti,0 + ǫ) first and Θ(ti+1,0) last,
otherwise the order of visiting the configurations does not matter.

January 8, 2011 16:54 WSPC/Guidelines main

16 Obermeyer, Ganguli and Bullo

(b)(a)

(c) (d)

R6

R2

R3

R4
R5

R3
R4

R6

R2
R1

R4

R5

R2
R1

R3
R2

R1

R4
R5

R3

s[0]

s[1]

s[0]

s[1]

s[0]

s[1]

s[0]

s[1]

Fig. 8. Gray regions are clear. The effect of a searchlight s[0] executing the action indicated by
the smaller arrow is (a) R1 merges with R2, (b) R1 merges with R2, (c) R1 merges with R2 and
R3 merges with R6, (d) R4 merges with R6. (a) and (b) are analogous to (a) and (b), resp., of

Fig. 3. On the other hand, (c) and (d) show the effects of s[1] rotating over the intersection of
s[0]’s beam with the reflex vertex, before s[0]’s action is executed as in (a) and (b), respectively.
Note that R6 in (c) and (d) are clear because they are simply artifacts which appeared as a result

of s[1] rotating over the intersection of s[0]’s beam with the reflex vertex.

A
[i0]
0 A

[i1]
1 A

[i2]
2 · · · A

[iM−1]
M−1 , we can construct another search schedule expressed as a

sequence of critical atomic actions. Reducing the problem further, suppose that

from an atomic sequential search schedule {A
[im]
m }M−1

m=0 we are able to construct

a new atomic sequential search schedule {Ã
[im]
m }M̃−1

m=0 such that for an arbitrary

searchlight, say s[0],

(i) the actions executed by searchlights other than s[0] are unaltered, and

(ii) the actions executed by s[0] are exclusively critical atomic (though they may

increase in number).

If we can find a procedure to construct such a schedule, then this procedure could

be repeated for each s[i], i ∈ {0, . . . , N − 1}, until we are left with a critical atomic

sequential schedule. We show such a procedure exists.

Let (Θm, Cm) denote the information state of the original schedule {A
[im]
m }M−1

m=0

just before the mth action is executed. Without loss of generality, assume that

in {A
[im]
m }M−1

m=0 all searchlights are initially aimed at critical angles. We construct

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 17

from {A
[im]
m }M−1

m=0 another search schedule {Ã
[im]
m }M̃−1

m=0 as described above essentially

by modifying {A
[im]
m }M−1

m=0 action by action. Suppose A
[0]
k is the first action which

rotates s[0] from a critical angle ψ
[0]
1 to a noncritical angle α contained in the critical

interval [ψ
[0]
1 , ψ

[0]
2]. We can let Ã

[im]
m = A

[im]
m , m ∈ {0, . . . , k − 1}, but we do not

want s[0] to stop at a noncritical angle, so we set Ã
[0]
k = Â

[0]
k (recall Definition 16).

Since Ã
[0]
k sweeps over a larger region than A

[0]
k and does not cause any merging

which A
[0]
k does not, it must clear the same maximal nonseparable regions as A

[0]
k .

We only need to worry about how this change in s[0]’s configuration will effect

subsequent actions by other searchlights. Suppose the next action is A
[1]
k+1. We keep

Ã
[1]
k+1 = A

[1]
k+1, but since during Ã

[1]
k+1 s[0] was aimed at ψ

[0]
2 (instead of α), the

effect of Ã
[1]
k+1 may be different than A

[1]
k+1. In particular, Ã

[1]
k+1 may not clear all

the same maximal nonseparable regions which A
[1]
k+1 did. The monotonicity property

of Lemma 7 guarantees we can compensate for this difference simply by choosing

Ã
[0]
k+2 = Ǎ

[0]
k . The important result of executing such an Ã

[0]
k+2 is that if we were

to then rotate s[0] from ψ
[0]
1 directly back to α (though we do not actually do this

because we only want s[0] to stop at critical angles), then we would end up in the

configuration Θk+2 with contamination state C � Ck+2. So far we have constructed

a schedule {Ã
[im]
m }k+2

m=0 from {A
[im]
m }k+1

m=0. The procedure continues alternately taking

an action from {A
[im]
m }Mm=k+2 and rotating s[0] over the critical interval [ψ

[0]
1 , ψ

[0]
2].

After every pair of such actions, the monotonicity property of Lemma 7 guarantees

the same maximal nonseparable regions will be cleared as in the original schedule.

In the end we are left with a sequential search schedule {Ã
[im]
m }M̃−1

m=0 which satisfies

the above enumerated requirements.

Putting together Theorems 1 and 2, we finally arrive at the main solution space

reduction result.

Corollary 1 (Main Reduction Result). Any instance of the Searchlight

Scheduling Problem which permits a general search schedule also permits a criti-

cal sequential search schedule.

Proof. Immediate from combining Theorems 1 and 2.

An interesting and open problem is whether it is possible to reduce the solution

space even further, e.g., as in Conjecture 3.1 below. Further reduction of the solution

space could allow for faster computation of search schedules.

Conjecture 3.1 (Rotation- and Contamination-Monotonicity). Any in-

stance of the Searchlight Scheduling Problem which permits a general search sched-

ule also permits a rotation- and contamination-monotone critical sequential search

schedule.i

iIt is intended that there would exist a rotation- and contamination-monotone critical sequential

January 8, 2011 16:54 WSPC/Guidelines main

18 Obermeyer, Ganguli and Bullo

Table 1. Geometric Preprocessing

Input: geometric problem instance (E , P)

1: for all searchlights i = 0, . . . , N − 1 do

2: compute visibility polygon V(p[i]);

3: extract critical angles Ψ[i] = {ψ
[i]
0 , ψ

[i]
1 , . . . , ψ

[i]

n
[i]
ψ

−1
} from V(p[i]);

4: compute cells γ0, γ1, . . . , γnγ−1 of environment partition Γ;
5: compute partition dual graph GΓ;

4. A Complete Algorithm

The solution space reduction result Corollary 1 tells us that if we can systematically

search the space of critical sequential schedules, then we are guaranteed to find

a search schedule if one exists. Our algorithm does just this by searching for a

solution trajectory through a discretization of the information space. Every critical

sequential search schedule, by definition, can be represented by a sequence of critical

atomic actions connecting critical information states (as in, e.g., Fig. 12), thus the

information space discretization is defined as follows.

Definition 17 (Directed Information Graph GI).

(i) nodes correspond to critical information states, and

(ii) there is a directed edge from one node, say x, to another node, say x′, if and

only if it is possible to reach x′ from x by executing a single critical atomic

action.

If a search schedule exists, then our algorithm will find it by searching GI for a path

from a completely contaminated node to a completely clear node. In its entirety the

algorithm consists of two parts: (i) geometric preprocessing which extracts combina-

torial information from the problem instance geometry, followed by (ii) systematic

search of the information graph. We detail these parts separately in Sections 4.1

and 4.2, then provide a discussion of implementation and computed examples in

Section 4.3.

4.1. Geometric Preprocessing

The geometric preprocessing, taking the environment geometry and searchlight

positions as input, computes an environment partition and a graph by means

of the sequence of computations shown in Table 1. Each of the searchlights’

visibility polygons V(p[i]), i ∈ {0, . . . , N − 1}, will have at most n edges and

can be computed in O(n log n) time.21 Let Ψ = {Ψ[0],Ψ[1], . . . ,Ψ[N−1]}, where

Ψ[i] = {ψ
[i]
0 , ψ

[i]
1 , . . . , ψ

[i]

n
[i]
ψ

−1
} denotes a list of the ith searchlight’s critical angles.

search schedule from some initial condition, not necessarily from any initial condition.

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 19

s[0]

s[2]

s[1]

s[0]

s[2]

s[1]

Fig. 9. The geometric preprocessing part of the complete algorithm (Tab. 1, Section 4) is illustrated
using a simple problem instance having three searchlights and one hole. First a geometric descrip-

tion of the problem instance is taken as input (left). This consists of the environment geometry
E together with the searchlight locations P . Next (right), the critical angles Ψ of the searchlights
(dashed lines) and environment partition Γ are computed. Each cell of Γ is either completely clear
or completely contaminated on any node of the information graph GI . Finally, the dual graph GΓ

of the environment partition is computed. This instance was solved by our C++ implementation
of the complete algorithm. The computed solution is illustrated in Fig. 12, statistics in Table 3.

Using Definition 8, each Ψ[i] can easily be extracted from V(p[i]) by checking for (i)

radially aligned edges of V(p[i]) in O(n) time, and (ii) inclusion of other searchlights

in V(p[i]) in O(Nn) time (point-in-polygon test).22 Adding these time complexities

gives a bound on the total time to compute Ψ.

Lemma 8. The critical angles Ψ can be computed in O(Nn log n+N2n) time.

Lemma 9 gives an upper bound on the size of each Ψ[i].

Lemma 9. A searchlight can have no more than r + 2N critical angles if located

on ∂E, otherwise no more than r + 2N − 2 if located in E◦.

Proof. These bounds follow directly from the Definition 8 of critical angles. A

searchlight located on ∂E may have 2 critical angles due to adjacent edges of ∂E ,

2(N − 1) due to line-of-sight with other searchlights, and r due to reflex vertices

of E , hence 2 + 2(N − 1) + r = r + 2N . For a searchlight located in E◦ the only

difference is that there can be no critical angles due to adjacent edges of ∂E .

In most instances, however, the number of critical angles is far less than the bound

in Lemma 9.

We now describe how the environment partition Γ is constructed. For each

searchlight s[i], i ∈ {0, . . . , N − 1}, and critical angle ψ
[i]
j , j ∈ {0, . . . , n

[i]
ψ − 1},

the jth critical segment of the ith searchlight is the closed line segment consist-

ing of all points illuminated by s[i] when aimed in the direction ψ
[i]
j . The critical

segments together partition E into a finite set of simply connected polygonal cells.j

jRecall that in Section 3 we spoke of cells as part of an exact cell decomposition of the searchlight

January 8, 2011 16:54 WSPC/Guidelines main

20 Obermeyer, Ganguli and Bullo

Examples are shown by the dashed lines in Figs. 9, 10, 11. Representing E as a

list of cells Γ = {γ0, γ1, . . . , γnγ−1} allows one to encode the contamination state

by a binary nγ-tuple CΓ. In CΓ, each cell is labeled either “0” for clear or “1”

for contaminated. This representation of a contamination state, together with the

searchlights’ joint configuration, is used to represent a node of GI . Lemma 10 gives

an upper bound on the time to compute Γ.

Lemma 10. The cells γ0, γ1, . . . , γnγ−1 of the environment partition Γ can be com-

puted in O((n+Nr +N2)8) time.

Proof. Constructing the cells of Γ amounts to computing the faces of an arrange-

ment of line segments. The faces of an arrangement of L line segments can be

computed in O(L8) time. We count the line segments contributing to our arrange-

ment. There are n segments due to E , and from Lemma 9 at most N(r+2N) critical

segments. Substituting L = n + Nr + 2N2, we find the cells can be computed in

O((n +Nr + 2N2)8) time. Because arrangements constitute an already well stud-

ied area of computational geometry, and for the sake of brevity, we omit further

detail.23

Lemma 11 gives an upper bound on the number of cells in Γ.

Lemma 11. The number nΓ of cells in the environment partition Γ is O(N4 +

r2N2).

Proof. Given and arrangement of L ∈ N lines in the plane, the maximum number

of regions they partition the plane into is L(L+1)
2 + 1; see Ref. 23. According to

Lemma 9, the interior of E is partitioned by at most N(r+2N) = rN+2N2 critical

segments. Setting L = rN+2N2, we see that the affine hulls of the critical segments

together partition the plane into at most

(rN + 2N2)(rN + 2N2 + 1)

2
+ 1 =

r2N2 + 4rN3 + rN + 4N4 + 2N2

2
+ 1

regions. This gives a conservative upper bound on the order of nΓ. We did not have

to take into account the n line segments of E because only the r reflex vertices can

cause the cell count to increase (by one each), so the order would not have been

affected.

The final task of geometric preprocessing is to compute the undirected dual

graph of Γ.

configuration space. These cells on T
N were a theoretical tool for obtaining the main reduction

result Corollary 1. Since as part of the geometric preprocessing we partition the environment E into
polygonal cells, we stipulate now that, whenever the term “cells” appears in Section 4, it is always
the environment partition cells which are intended, not the cells of the exact cell decomposition
of T

N .

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 21

Definition 18 (Dual Partition Graph). The dual graph GΓ of Γ is the undi-

rected graph defined as follows:

(i) its nodes are the polygonal cells {γ0, γ1, . . . , γnγ−1} of Γ, and

(ii) there is a (undirected) edge from one node, say γ, to another node, say γ′, if

and only if the polygons γ and γ′ share an edge.

An example of a partition dual graph is shown in Fig. 9. Encoding the adjacency

information of the environment partition cells, GΓ will later allow us to compute

the recontamination which can occur during an information state transition. In this

way, GΓ is a parameter of the information state transition function fGΓ
(x, u) as we

will see in Section 4.2 and Table 2. Lemma 12 gives an upper bound on the time to

compute GΓ.

Lemma 12. The dual graph GΓ of the evironment partition Γ can be computed in

O((N4 + r2N2)2(n+Nr +N2)2) time.

Proof. GΓ can be easily computed by comparing every edge of every cell. When

an edge of two cells matches, then an edge is added between the respective nodes

of GΓ. Lemma 11 tells us we must check all pairs of O(N4 + r2N2) cells. Each cell

has at most n+Nr+ 2N2 edges, so for each of the O((N4 + r2N2)2) pairs of cells,

O((n+Nr+N2)2) edges must be compared. The total time complexity is therefore

O((N4 + r2N2)2(n+Nr +N2)2).

Together Lemmas 8, 10, and 12 tell us that the total time complexity of geo-

metric preprocessing is polynomial in the problem instance parameters N , n, and

r. It may be possible to compute the environment partition Γ and its dual graph

GΓ faster than our bounds suggest. However, we have not spent much effort op-

timizing the geometric preprocessing because, as indicated by computed examples

(see, e.g., Table 3), the overall time complexity of our algorithm is dominated by

the information graph search described in Section 4.2.

4.2. Searching the Information Graph GI

The information graph GI can be searched using any systematic graph search algo-

rithm such as breadth-first, Dijkstra, or A∗. Graph search algorithms are surveyed

nicely in, e.g., Ref. 16 and 24. We use breadth-first for simplicity. A pseudocode

is provided in Table 2, where our notation closely follows that used on page 33 of

Ref. 16. Since GI is typically very large, containing many irrelevant and unreachable

nodes, we do not precompute GI , but instead nodes are added to the representation

only as visited by the graph search. The search begins by pushing an initial informa-

tion state x0 onto the FIFO (First-In First-Out) queue Q. In x0, the contamination

state CΓ = (1, 1, 1 . . . , 1) (environment completely contaminated) and the search-

light configuration may be chosen arbitrarily. At each iteration of the main loop a

node x is popped off the queue Q, added to the search tree T , and its out-neighbors

January 8, 2011 16:54 WSPC/Guidelines main

22 Obermeyer, Ganguli and Bullo

Table 2. Breadth First Search of Information Graph GI

xinitial := initial GI node with CΓ = (1, 1, 1, . . . , 1)
Xclear := set of GI nodes with CΓ = (0, 0, 0, . . . , 0)
Q := FIFO queue of alive GI nodes
T := search tree of dead GI nodes
U := set of critical atomic actions

fGΓ
(x, u) := information state transition function

1: Q.Insert(xinitial);
2: while Q not empty do

3: x← Q.PopFirst();
4: T.Insert(x);
5: if x ∈ Xclear then

6: return SUCCESS;
7: for all u ∈ U do

8: x′ ← fGΓ
(x, u);

9: if x′ /∈ Q and x′ /∈ T then

10: Q.Insert(x′);
11: return FAILURE;

(in GI) are computed. If an out-neighbor is a goal node, i.e., an information state

having a completely clear environment (CΓ = (0, 0, 0, . . . , 0)), then the algorithm

returns SUCCESS. If an out-neighbor is not a goal node and it is not redundant

(not already in Q or T), then it is added onto the queue. FAILURE is returned if Q

becomes empty and no goal node has been found, which means no solution exists.

When the algorithm does return SUCCESS, a critical sequential search schedule

can be recovered by backtracing pointers through the search tree and storing the

sequence of critical atomic actions.

Theorem 3 and Corollary 2 provide upper bounds on the size of GI .

Theorem 3 (Number of Nodes in GI). The number of nodes in the information

graph GI isk (2N + r)N2O(N4+N2r2)).

Proof. Follows from Lemmas 11 and 9. To count the number of unique contami-

nation labelings we raise 2 to the bound on the number of cells. (2N + r)N is an

upper bound on the number of unique critical searchlight configurations.

Stirling’s approximation says that NN ≈ N !, so the upper bound in Theorem 3

grows with N worse than N !. The following Corollary 2 of Theorem 3 shows, how-

ever, that if there is an upper bound k on the maximum number of critical angles

any single searchlight has, then the number of nodes in GI can be bounded by a

kA function g(x) is in the set 2O(h(x)) if ∃ x0 and c ∈ R>0 such that x > x0 =⇒ g(x) < 2ch(x).
Note that O(2h(x)) is a proper subset of 2O(h(x)).

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 23

function which is only exponential in N .

Corollary 2 (Number of Nodes in GI). Suppose that each searchlight in an

instance has at most k critical angles. Then the number of nodes in the information

graph GI is kN2O(N2k2+r).

Proof. The number of line segments forming the environment partition can be

no greater than Nk + n, so setting ξ = Nk + n in the formula in the proof of

Lemma 11 and adding r gives an upper bound on the number of cells. To count

the number of unique (binary) contamination labelings, we raise 2 to the bound

on the number of cells. kN is an upper bound on the number of unique critical

searchlight configurations. The resulting upper bound on the number of nodes in

GI is kN2
1
2N

2k2+ 1
2Nk+r+1.

The bounds on the size of GI given in Theorem 3 Corollary 2 could be used to

derive a bound on the time complexity of the graph search, however we do not do

this because we believe such bounds would be too loose. Instead, in Theorem 4 we

derive a bound which reflects the output sensitivity of the computation time.

Theorem 4 (Time Complexity of GI Breadth-First Search). Suppose that,

for a particular problem instance (E , P) and initial information state x0, there exists

a search schedule consisting of M∗ critical atomic actions, and M∗ is the small-

est such number. Then performing the breadth-first search of GI shown in Table 2

starting from x0 takes time O((N4 + r2N2)(2N)2M
∗

)).

Proof. Referring to Table 2, observe that the number of possible critical atomic

actions |U | = 2N (each searchlight can rotate either cw or ccw). This means each

node of GI has at most 2N out-neighbors. Taking 2N as the branching factor of the

breadth-first search tree, and knowing the search will terminate at depth M∗, we see

that O((2N)M
∗

) nodes will have been visited. To generate each node (except for x0)

an information state transition must be computed, which can be done in O(nΓ) time

using a technique called floodfill.l So far the total time complexity we have accounted

for is O(nΓ(2N)M
∗

). Additional complexity is added by each node being compared

with every other node to avoid redundancy in the search tree. To check whether

two information states are equal costs O(N + nΓ) time because the searchlight

configurations and contamination state of each cell must be compared. There are

O((2N)2M
∗

) pairs of nodes, so the redundancy checks result in total time complexity

O((N + nΓ)(2N)2M
∗

). Using Lemma 11 to substitute O(nΓ) = O(N4 + r2N2), we

obtain total time complexity O((N4 + r2N2)(2N)2M
∗

).

lFloodfill is technique commonly used in computer graphics for painting connected regions of
rasterized images.

January 8, 2011 16:54 WSPC/Guidelines main

24 Obermeyer, Ganguli and Bullo

4.3. Implementation and Computed Examples

We have implemented our algorithm, both geometric preprocessing and information

graph breadth-first search, in C++ on a 2.33GHz i686 processor using the Standard

Library and the VisiLibity library for visibility computations.25 The VisiLibity

Library, which we used only for the geometric preprocessing step, uses so-called

ǫ-geometry for robustness (Ref. 26, 27). Table 3 shows statistics from the computed

examples of Figs. 1, 9, 10, and 11. Fig. 12 shows a graphical illustration of the

critical sequential search schedule computed for the instance in Fig. 9.

s[0]

s[1]

s[2]

Fig. 10. Dashed lines show the critical angles for each searchlight and also partition the envi-

ronment into discrete simply connected polygonal cells. Each cell is either completely clear or
completely contaminated on any node of the information graph. This instance was solved by our
C++ implementation of the complete algorithm described in Section 4. Computation statistics
are found in Table 3.

We have tested dozens of problem instances and although the algorithm works

well for instances with up to 4 guards and 5 critical angles per guard (such as

the examples shown in Figs. 1, 9, 10, 11), it seems there is a very rapid combi-

natorial explosion for problem instances even slightly more complex. For example,

one problem instance we tested had n = 21 vertices, r = 14 reflex vertices, h = 3

holes, N = 5 searchlights, and it computed for over 13 hours without finding a

solution. This raises an important open question which we do not answer in this

article, namely whether the general Searchlight Scheduling Problem is NP-hard.

5. Extension to Searchlights with Finite Field of View

A searchlight senses only along a ray, but many real sensors, such as security cam-

eras, have a finite field of view. This motivates the definition of φ-searchlight,m

mThe name “φ-searchlight” was inspired by the “φ-searchers” of Ref. 4, the difference being that
a “φ-searcher” can rotate and translate, whereas a “φ-searchlight” can only rotate.

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 25

s[0]

s[2]

s[1]

s[3]

Fig. 11. Dashed lines show the critical angles for each searchlight and also partition the envi-

ronment into discrete simply connected polygonal cells. Each cell is either completely clear or
completely contaminated on any node of the information graph. This instance was solved by our
C++ implementation of the complete algorithm described in Section 4. Computation statistics
are found in Table 3.

Table 3. Statistics from computed examples.

Problem Edges in Cells in

Instance Guards Environment Environment

Partition

Fig. 1 2 8 6

Fig. 9, 12 3 11 19

Fig. 10 3 8 15

Fig. 11 4 16 22

Information Geometric Information Total

Graph Nodes Preprocessing Graph Search Computation

Visited Time (seconds) Time (seconds) Time (seconds)

13 < 0.01 < 0.01 < 0.01

497 0.03 0.02 0.05

464 0.02 0.01 0.03

5401 0.05 1.79 1.84

which is identical to a searchlight except instead of sensing only along a ray, it can

sense anywhere within a finite field of view measured by an angle φ as illustrated

in Fig. 13. Now we can define the φ-Searchlight Scheduling Problem:

Given N φ-searchlights with finite fields of view φ[0], φ[1], φ[2], . . . , φ[N], find

a rotation schedule such that any target in an environment will necessarily

January 8, 2011 16:54 WSPC/Guidelines main

26 Obermeyer, Ganguli and Bullo

Fig. 12. From left to right, top to bottom, here is shown a critical sequential search schedule
computed by our C++ implementation of the complete algorithm described in Section 4 (same

instance as Fig. 9). Grey regions are clear, the smaller arrows indicate which searchlight will
execute a critical atomic action at each step of the sequence. Computation statistics are found in
Table 3.

be detected in finite time.

One must ask whether there is actually any advantage to having searchlights

with finite field of view, e.g., whether there are problem instances which can be

solved with φ-searchlights but not by searchlights. Indeed there are instances where

greater fields of view enable a solution.

Lemma 13 (Increased Field of View Advantage). As the field of view of

φ-searchlights increases, the set of solvable problem instances grows.

Proof. In the simple “hour-glass”n example of Fig. 14, there is no solution unless

both searchlights have a field of view φmin or greater.

nThanks to Nicola Ceccarelli for suggesting this example.

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 27

s[0]

s[2]

s[1]

φ[0]
φ[1]

φ[2]

Fig. 13. In the φ-Searchlight Scheduling Problem, each searchlight may have a different field of
view φ[0], φ[1], φ[2], . . . , φ[N].

1 2

43

φmin

s[0]

s[1]

Fig. 14. In this simple “hour-glass” example, the environment cannot be cleared unless both φ-
searchlights have field of view at least φmin. To see why, imagine the fields of view are both less

than φmin and notice if you clear any one of the corners (labeled 1, 2, 3, and 4), then trying to
clear a second corner cannot be accomplished without contaminating the first. On the other hand,
if both fields of view are φmin or greater, the problem is easily solvable because each φ-searchlight

is able to simultaneously illuminate one of the corners and the other φ−searchlight

The algorithm we have described in Section 4 could be used with φ-searchlights

as is, but this would not take advantage of the added capabilities offered by greater

fields of view. In fact only a small modification is necessary to obtain a complete

algorithm for φ-searchlight scheduling. We need only redefine the critical angles.

Observe that for a φ-searchlight, critical visibility events can only occur when there

is a change in the set of searchlight critical angles (as per Definition 8) illuminated

by its field of view. Therefore, taking the configuration θ[i] of a φ-searchlight s[i] to

January 8, 2011 16:54 WSPC/Guidelines main

28 Obermeyer, Ganguli and Bullo

be the angular position of the bisector of its field of view,o we have the following

definition.

Definition 19 (φ-Searchlight Critical Angle). An angle ψ is a critical angle of

a φ-searchlight s[i] if θ[i] passing through ψ implies a change in the set of searchlight

critical angles illuminated by s[i]’s field of view.

Fig. 15. Supposing the dotted lines are searchlight critical angles, here is shown that a φ-searchlight
may have multiple searchlight critical angles in its view at any given time. The φ-searchlight critical
angles are thus defined in terms of the searchlight critical angles as in Definition 19.

Analogous to Definition 14, we can define a critical sequential schedule for φ-

searchlights to be one in which only one φ-searchlight is active at a time and each

φ-searchlight may only rotate between φ-searchlight critical angles. Furthermore,

all the Lemmas, Theorems, and Corollaries which we proved for searchlights in

Section 3 can be proven analogously for φ-searchlights simply by substituting the

new definition of critical angle. The proofs are so similar that we omit them and

simply state the main (solution space) reduction result.

Corollary 3. Any instance of the φ-Searchlight Scheduling Problem which permits

a general search schedule also permits a critical sequential search schedule.

Just as Corollary 1 led to the design of the complete algorithm for searchlight

scheduling in Section 4, Corollary 3 allows a complete algorithm for φ-searchlight

scheduling.

6. Conclusions

In this article we have shown that the Searchlight Scheduling Problem can be re-

duced to a path planning problem through an appropriate information graph. The

proof was based on an exact cell decomposition of the searchlights’ toroidal con-

figuration space. Using the reduction result we designed a complete algorithm for

oTaking the bisector is rather arbitrary, we just need a reference angle.

January 8, 2011 16:54 WSPC/Guidelines main

A Complete Algorithm for Searchlight Scheduling 29

searchlight scheduling. The algorithm is divided into two parts. First, geometric

preprocessing is performed in time polynomial in the number of guards and envi-

ronment vertices. Second, the information graph is searched breadth-first. Our time

complexity upper bound for the information graph breadth-first search is exponen-

tial in the output size. Although it remains an important open question whether

the general Searchlight Scheduling Problem is NP-hard, computed examples demon-

strated that the algorithm can be practical for problem instances of useful size, and

for which there currently exists no other algorithm. Additionally, we have shown

that our complete algorithm for searchlight scheduling can be directly extended to

the φ-Searchlight Scheduling Problem in which sensors have finite fields of view.

In the future, we hope that NP-hardness of the Searchlight Scheduling Prob-

lem can be shown, or else that the computational time complexity bounds for a

complete algorithm can be improved. There are also many interesting and unex-

plored variations of the Searchlight Scheduling Problem. These include minimizing

time to clear the environment, evaders with bounded speed, sensor limitations such

as limited depth of field, and sensors sweeping a half-plane or cone through three

dimensional environments.

Acknowledgments

This material is based upon work supported in part by AFOSR MURI Award

F49620-02-1-0325, NSF CMS Award 0626457, and the DoD SMART Fellowship

program.

References

1. K. Sugihara, I. Suzuki, and M. Yamashita, “The searchlight scheduling problem,” SIAM

Journal on Computing, vol. 19, no. 6, pp. 1024–1040, 1990.
2. H. Hattori, S. Nakano, and T. Nishizeki, “Searchlight schedulings for simple polygons,”

Transactions of the Japan Society for Industrial and Applied Mathematics, vol. 7, no. 3,
pp. 265–279, 1997.

3. M. Yamashita, I. Suzuki, and T. Kameda, “Searching a polygonal region by a group of
stationary k-searchers,” Information Processing Letters, vol. 92, no. 1, pp. 1–8, 2004.

4. B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion with limited
field of view,” International Journal of Robotics Research, vol. 25, no. 4, pp. 299–315,
2006.

5. M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda, “Searching for mobile intruders
in a polygonal region by a group of mobile searchers,” Algorithmica, vol. 31, no. 2,
pp. 208–236, 2001.

6. B. Simov, G. Slutzki, and S. M. LaValle, “Pursuit-evasion using beam detection,” in
IEEE Int. Conf. on Robotics and Automation, (San Francisco, CA), pp. 1657–1662,
Apr. 2000.

7. J. H. Lee, S. M. Park, and K. Y. Chwa, “Simple algorithms for searching a polygon
with flashlights,” Information Processing Letters, vol. 81, no. 5, pp. 265–270, 2002.

8. J. Urrutia, “Art gallery and illumination problems,” in Handbook of Computational

Geometry (J. R. Sack and J. Urrutia, eds.), pp. 973–1027, North-Holland, 2000.
9. J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

January 8, 2011 16:54 WSPC/Guidelines main

30 Obermeyer, Ganguli and Bullo

10. T. C. Shermer, “Recent results in art galleries,” Proceedings of the IEEE, vol. 80,
no. 9, pp. 1384–1399, 1992.

11. U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy task-specific and
floor plan-specific coverage requirements,” Computer Vision and Image Understanding,
vol. 103, no. 3, pp. 156–169, 2006.

12. A. Ganguli, J. Cortés, and F. Bullo, “Distributed deployment of asynchronous guards
in art galleries,” in American Control Conference, (Minneapolis, MN), pp. 1416–1421,
June 2006.

13. A. Ganguli, J. Cortés, and F. Bullo, “Visibility-based multi-agent deployment in or-
thogonal environments,” in American Control Conference, (New York), pp. 3426–3431,
July 2007.

14. K. J. Obermeyer, A. Ganguli, and F. Bullo, “Asynchronous distributed searchlight
scheduling,” in IEEE Conf. on Decision and Control, (New Orleans, LA), pp. 4863–
4868, Dec. 2007.

15. L. J. Guibas, J. C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, “A visibility-
based pursuit-evasion problem,” International Journal of Computational Geometry &

Applications, vol. 9, no. 4-5, pp. 471–493, 1999.
16. S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006. Available at

http://planning.cs.uiuc.edu.
17. B. Simov, G. Slutzki, and S. M. LaValle, “Clearing a polygon with two 1-searchers,”

International Journal of Computational Geometry & Applications, 2007. to appear.
18. A. Efrat, L. J. Guibas, D. C. Lin, J. S. B. Mitchell, and T. M. Murali, “Sweeping simple

polygons with a chain of guards,” in ACM-SIAM Symposium on Discrete Algorithms,
(San Francisco, CA), pp. 927–936, Jan. 2000.

19. H. Choset, E. Acar, A. A. Rizzi, and J. Luntz, “Exact cellular decompositions in terms
of critical points of Morse functions,” in IEEE Int. Conf. on Robotics and Automation,
(San Francisco, CA), pp. 2270–2277, Apr. 2000.

20. H. Choset, “Nonsmooth analysis, convex analysis, and their applications to motion
planning,” International Journal of Computational Geometry & Applications, vol. 9,
no. 4-5, pp. 447–469, 1999.

21. S. K. Ghosh, Visibility Algorithms in the Plane. Cambridge University Press, 2007.
22. J. O’Rourke, Computational Geometry in C. Cambridge University Press, 2000.
23. D. Halperin, “Arrangements,” in Handbook of Discrete and Computational Geome-

try (J. E. Goodman and J. O’Rourke, eds.), pp. 529–562, New York: Chapman and
Hall/CRC Press, 2 ed., 2004.

24. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,
2 ed., 2003.

25. K. J. Obermeyer, “The VisiLibity library.” http://www.VisiLibity.org, 2008. R-1.
26. L. Guibas, D. Salesin, and J. Stolfi, “Epsilon geometry: building robust algorithms

from imprecise computations,” in ACM Symposium on Computational Geometry, (New
York), pp. 208–217, June 1989.

27. M. Segal, “Using tolerances to guarantee valid polyhedral modeling results,” in Pro-

ceedings of SIGGRAPH, (Dallas, TX), pp. 105–114, Aug. 1990.

	Introduction
	Preliminaries
	Notation
	Assumptions

	Reducing the Solution Space
	A Complete Algorithm
	Geometric Preprocessing
	Searching the Information Graph GI
	Implementation and Computed Examples

	Extension to Searchlights with Finite Field of View
	Conclusions

