rr

Multi-agent deployment for visibility coverage in
polygonal environments with holes

Karl J. Obermeyer, Anurag Gangufi, Francesco Bullb

1 Center for Control, Dynamical Systems, and Computation, WrfiZalifornia at Santa Barbara, CA 93106, USA,
kar| @ngi neeri ng. ucsh. edu, bul | o@ngi neeri ng. ucshb. edu
2 UtopiaCompression Corporation, 11150 W. Olympic Blvd, Su2@ 80s Angeles, CA 90064, USA
anur ag@it opi aconpr essi on. com

SUMMARY

This article presents a distributed algorithm for a groupddfotic agents with omnidirectional vision to
deploy into nonconvex polygonal environments with holegeBts begin deployment from a common
point, possess no prior knowledge of the environment, aredate only under line-of-sight sensing and
communication. The objective of the deployment is for thenggyéo achieve full visibility coverage of the
environment while maintaining line-of-sight connectmitith each other. This is achieved by incrementally
partitioning the environment into distinct regions, eacimpletely visible from some agent. Proofs are
given of (i) convergence, (ii) upper bounds on the time andlemof agents required, and (iii) bounds on
the memory and communication complexity. Simulation ressaihd description of robust extensions are also
included. ~ oo e oo T d.

KEY WORDS: multi-agent system, sensor network, robotiovoek, swarm, visibility, line of sight,
deployment, coverage

1. INTRODUCTION

Robots are increasingly being used for surveillance missions too darsgiemohumans, or which
require duty cycles beyond human capacity. In this article we design a dtetlilalgorithm for
deploying a group of mobile robotic agents with omnidirectional vision into noveo polygonal
environments with holes, e.g., an urban or building floor plan. Agents aréidekexcept for their
unique identifiers (UIDs), begin deployment from a common point, possegsior knowledge of
the environment, and operate only under line-of-sight sensing and comatianicThe objective
of the deployment is for the agents to achieve full visibility coverage of ttvir@mment while
maintaining line-of-sight connectivity (at any time the agents’ visibility graphstgts of a single
connected component). We call this tbéstributed Visibility-Based Deployment Problem with
Connectivity Once deployed, the agents may supply surveillance information to artopdraugh
the ad-hoc line-of-sight communication network. A graphical descriptfamuoobjective is given
in Fig.[1.

Approaches to visibility coverage problems can be divided into two categdtiese where
the environment is known a priori and those where the environment mudisbevered. When
the environment is known a priori, a well-known approach is AlneGallery Problemin which
one seeks the smallest set of guards such that every point in a polygisible to some guard.

*Correspondence tkar | . ober reyer @nai | . com

2 K.J. OBERMEYER, A. GANGULI, F. BULLO

Figure 1. This sequence (left to right, top to bottom) shovesnraulation run of the distributed visibility-
based deployment algorithm described in Sec. 6. AgentxKbdtisks) initially are colocated in the
lower left corner of the environment. As the agents spread thdy claim areas of responsibility
(green) which correspond to cells of the incremental partittree 7p. Blue lines show line-of-
sight connections between agents responsible for neigigorertices of 7p. Once agents have
settled to their final positions, every point in the envir@amn is visibile to some agent and the
agents form a line-of-sight connected network. An animatidnthis simulation can be viewed at
http://notion. me. ucsh. edu/ ~karl / novi es/ dwh. nov .

This problem has been shown both NP-hard [1] and APX-hard [2] in tmebeu of verticesn
representing the environment. The best known approximation algoritherssoffitions only within
a factor ofO(log g), whereg is the optimum number of agents [3]. TAet Gallery Problem with
Connectivityis the same as the Art Gallery Problem, but with the additional constraint that the
guards’ visibility graph must consist of a single connected component, ieeguidrds must form a
connected network by line of sight. This problem is also NP-hard[#]. Many other variations on
the Art Gallery Problem are well surveyed in [5, 6, 7]. The classigtlGallery Theoremproven
firstin [8] by induction and in [9] by a beautiful coloring argument, states|tha vertex guard@are
always sufficient and sometimes necessary to cover a polygomwithtices and no holes. Thgt
Gallery Theorem with Holedater proven independently by [10] and [11], states Uf@ﬁj point
guard are always sufficient and sometimes necessary to cover a polygom weitices andh
holes. If guard connectivity is required, [12] proved by induction Ei8] by a coloring argument,
that | “52] vertex guards are always sufficient and occasionally necessapofggons without
holes. We are not aware of any such bound for connected covefgmaygons with holes. For
polygonal environments with holes, centralized camera-placement algod#suogbed in [14] and
[15] take into account practical imaging limitations such as camera rangengtel@-incidence,
but at the expense of being able to obtain worst-case bounds as in tlkalety Theorems. The
constructive proofs of the Art Gallery Theorems rely on global knog#edf the environment and
thus are not amenable to emulation by distributed algorithms.

One approach to visibiliy coverage when the environment must be diszbigio first use SLAM
(Simultaneous Localization And Mapping) techniques [16] to explore and buitdp of the entire

TA vertex guards a guard which is located at a vertex of the polygonal emvirent.
A point guardis a guard which may be located anywhere in the interior or efbtiundary of a polygonal environment.

MULTI-AGENT DEPLOYMENT 3

environment, then use a centralized procedure to decide where to std.dg [17], for example,
deployment locations are chosen by a human user after an initial map habwbkkewaiting for
a complete map of the entire environment to be built before placing agents rhag desirable.
In [18] agents fuse sensor data to build only a map of the portion of thecemuent covered so
far, then heuristics are used to deploy agents onto the frontier of the thistmaprepeating this
procedure incrementally expands the covered region. For any tecBmigyimg heavily on SLAM,
however, synchronization and data fusion can pose significant chaflesnder communication
bandwidth limitations. In [19] agents discover and achieve visibility covedga environment
not by building a geometric map, but instead by sharing only combinatoriahiafiton about the
environment, however, the strategy focuses on the theoretical limits ofeghdbe achieved with
minimalistic sensing, thus the amount of robot motion required becomes impractical.

Most relevant to and the inspiration for the present work are the distdbuitibility-based
deployment algorithms, for polygonal environments without holes, develmxently by Ganguli
et al [20, 21, 22]. These algorithms are simple, require only limited impa&ebasmmunication,
and offer worst-case optimal bounds on the number of agents requinedbasic strategy is to
incrementally construct a so-calledgivation treethrough the environment. To each vertex in the
navigation tree corresponds a region of the the environment which is ctatyplésible from that
vertex. As agents move through the environment, they eventually settle minceodes of the
navigation tree such that the entire environment is covered.

The contribution of this article is the first distributed deployment algorithm whidbes, with
provable performance, the Distributed Visibility-Based Deployment Problém@onnectivity in
polygonal environments with holes. Our algorithm operates using linéggbf-sommunication and
a so-calledpartition tree data structure similar to theavigation treeused by Ganguli et al as
described above. The algorithms of Ganguli et al fail in polygonal enwirents with holes because
branches of the navigation tree conflict when they wrap around one @& abes. Our algorithm,
however, is able to handle such “branch conflicts”. Given at lg&st=2 | agents in an environment
with n vertices andh holes, the deployment is guaranteed to achieve full visibility coverage of
the environment in tim&)(n? + nh), or time O(n + h) under certain technical conditions. We
also prove bounds on the memory and communication complexity. The deployaleaves in
simulations as predicted by the theory and can be extended to achievinesisu® agent arrival,
agent failure, packet loss, removal of an environment edge (swah@sening door), or deployment
from multiple roots.

This article is organized as follows. We begin with some technical definitions dn Zehen
a precise statement of the problem and assumptions in[Sec. 3. Details on tit€ agasing,
dynamics, and communication are given in $ec. 4. Algorithm descriptionsdinglpseudocode
and simulation results, are presented in Sec. 5 and Sec. 6. We concludé&am/Sec

2. NOTATION AND PRELIMINARIES

We begin by introducing some basic notation. The real numbers are eaprdsbyR. Given a
set, sayA, the interior ofA is denoted byint(A), the boundary by A, and the cardinality byA|.
Two setsA and B areopenly disjointif int(A) Nint(B) = . Given two pointsa, b € R?, [a, b] is
the closed segmerttetweena andb. Similarly,]a,b] is the open segmeribetweens andb. The
number of robotic agents i& and each of these agents has a unique identifier (UID) taking a
value in{0,..., N — 1}. Agent positions aré = (p°, ..., plN=1) atuple of points ifR2. Just as
pll represents the position of agenive use such superscripted square brackets with any variable
associated with agente.g., as in Table IV.

We turn our attention to the environment, visibility, and graph theoretic concdjts
environmente is polygonal with vertex set, edge sett, total vertex count = |Ve| = |E¢|,
and hole count. Given any polygor: C &, the vertex set ot is V.. and the edge set iB.. A
segmenta, b] is adiagonalof £ if (i) « andb are vertices of, and (ii) Ja, b[C int(€). Let e be
any point in€. The pointe is visible fromanother point’ € £ if [e, e’'] C £. Thevisibility polygon
V(e) C € of e is the set of points i visible frome (Fig.[2). Thevertex-limited visibility polygon

4 K.J. OBERMEYER, A. GANGULI, F. BULLO

V(e) C Vis the visibility polygonV(e) modified by deleting every vertex which does not coincide
with an environment vertex (Fig. 2). dap edgeof V(e) (resp.V(e)) is defined as any line segment
[a,] such thafla, b[C int (&), [a,b] C V(e) (resp.[a,b] C dV(e)), and it is maximal in the sense
thata, b € OE. Note that a gap edge of(e) is also a diagonal of. For short, we refer to the gap
edges o (e) as thevisibility gapsof e. A setR C & is star-convexf there exists a point € R such

Figure 2. In a simple nonconvex polygonal environment a@vwshexamples of the visibility polygon
(green, left) of a point observer (black disk), and the velimited visibility polygon (green, right) of the
same point.

that R C V(e). Thekernelof a star-convex seR, is the sef{e € £|R C V(e)}, i.e., all points inR

from which all of R is visible. Thevisibility graph G, ¢ (P) of a set of points? in environment€

is the undirected graph with as the set of vertices and an edge between two vertices if and only if
they are (mutually) visible. Areeis a connected graph with no simple cyclesoéted treds a tree

with a special vertex designated as thet. Thedepthof a vertex in a rooted tree is the minimum
number of edges which must be treversed to reach the root from thekv&iven a tred, V7 is

its set of vertices ané' its set of edges.

3. PROBLEM DESCRIPTION AND ASSUMPTIONS

The Distributed Visibility-Based Deployment Problem with Connectiwtyich we solve in the
present work is formally stated as follows:

Design a distributed algorithm for a network of autonomous robotic agentspioy
into an unmapped environment such that from their final positions every ipoihe
environment is visible from some agent. The agents begin deployment foomiiaon
point, their visibility graphG.is ¢(P) is to remain connected, and they are to operate
using only information from local sensing and line-of-sight communication.

By local sensing we intend that each agent is able to sense its visibility gdpsglative positions
of objects within line of sight. Additionally, we make the followimgain assumptions

(i) The environment is static and consists of a simple polygonal outer boundary together with
disjoint simple polygonal holes. By simple we mean that each polygon hasla bmgndary
component, its boundary does not intersect itself, and the number of exfigte.

(i) Agents are identical except for their UID8,(.., N — 1).

(iif) Agents do not obstruct visibility or movement of other agents.
(iv) Agents are able to locally establish a common reference frame.
(v) There are no communication errors nor packet losses.

Later, in Secl. 6,6 we will describe how our nominal deployment algorithm eaextended to
relax some assumptions.

MULTI-AGENT DEPLOYMENT 5

4. NETWORK OF VISUALLY-GUIDED AGENTS

In this section we lay down the sensing, dynamic, and communication model fagéms. Each
agent has “omnidirectional vision” meaning an agent possesses solice dexcombination of
devices which allows it to sense within line of sight (i) the relative position offzer agent, (i)
the relative position of a point on the boundary of the environment, and (@ ptp edges of its
visibility polygon.

For simplicity, we model the agents as point masses with first order dynamicsgeat; anay
move througlt according to the continuous time control system

P =l 1)

where the controk!” is bounded in magnitude by,,... The control action depends on time,
values of variables stored in local memory, and the information obtaineddoonmunication and
sensing. Although we present our algorithms using these first ordemigsathe crucial property
for convergence is only that an agent is able to navigate along any quooted) straight line
segment between two points in the environm&nthus the deployment algorithm we describe is
valid also for higher order dynamics.

The agents’ communication graph is precisely their visibility gréphs (P), i.e., anyvisibility
neighbors(mutually visible agents) may communicate with each other. Agents may send their
messages using, e.g., UDP (User Datagram Protocol). Each ageft (.., N — 1) stores received
messages in a FIFO (First-In-First-Out) bufferBuffer’ until they can be processed. Messages
are sent only upon the occurrence of certain asynchronous evehtheagents’ processors need
not be synchronized, thus the agents forneaant-driven asynchronous robotic netwsikilar to
that described, e.g., in [23]. In order for two visibility neighbors to esthldicommon reference
frame, we assume agents are able to solvetnespondence problerthe ability to associate the
messages they receive with the corresponding robots they can seeayhie accomplished, e.g.,
by the robots performing localization, however, as mentioned in/Sec. 1, thig msghup limited
communication bandwidth and processing power. Simpler solutions include hayémgs display
different colors, “license plates”, or periodic patterns from LEDH[24

5. INCREMENTAL PARTITION ALGORITHM

We introduce a centralized algorithm to incrementally partition the environgeantb a finite set

of openly disjoint star-convex polygonal cells. Roughly, the algoritherages by choosing at each
step a newantage poinbn the frontier of the uncovered region of the environment, then computing
a cell to be covered by that vantage point (each vantage point is in thelladrits corresponding
cell). The frontier is pushed as more and more vantage point - cell paiedaed until eventually
the entire environment is covered. The vantage point - cell pairs folineeteld rooted tree structure
called thepartition tree 7. This algorithm is a variation and extension of an incremental partition
algorithm used in [22], the main differences being that we have addedtacpt for handling
holes and adapted the notation to better fit the added complexity of handling Hiodegeployment
algorithm to be described in Séd. 6 is a distributed emulation of the centralizedniectal partition
algorithm we present here.

Before examining the precise pseudocode Table I, we informally stepgiire incremental
partition algorithm for the simple example of Fig. 3a-f. This sequence showsrthieonment
partition together with corresponding abstract representations of thiequairee 7. Each vertex
of 7p is a vantage point - cell pair and edges are based on cell adjacenen &iy vertex offp,
say (pe, ce), € is thePTVUID (Partition Tree Vertex Unique IDentifierThe PTVUID of a vertex
at depthd is a d-tuple, e.g., (1), (2,1), or (1,1,1). The symbbis used as the root’s PTVUID.
The algorithm begins with the root vantage paipt The cell ofpy is the grey shaded regiag in
Fig. 3a, which is the vertex-limited visibility polygon(p). According to certain technical criteria,
made precise later, child vantage points are chosen on the endpoints oktt@ared gap edges.

6 K.J. OBERMEYER, A. GANGULI, F. BULLO

Table I. Centralized Incremental Partition Algorithm

INCREMENTAL_PARTITION(E, py)
1: {Compute and Insert Root Vertex infg }

2: ¢g —V(py);
3: for each gap edgg of ¢, do
4: labelg asunexpl or ed in cy;
5: insert(py, cp) into Tp;
6: {Main Loop}
7: while any cell in7p hasunexpl or ed gap edgesdo
8: ¢ — any cellin7p with unexpl or ed gap edges;
9: g+« anyunexpl or ed gap edge ot,;
10 (pg,ce) < CHILD(E,7p, ¢, g); {See Tab. I}
11: {Check for Branch Conflicls
12: if there exists any cells in 7p which is inbranch conflictwith ¢, then

13: discard(p, c¢);

14: labelg asphant omwal | in c.;
15: ese

16: insert(pe, cg) into 7p;

17: labelg aschi | dinc¢;

18: return 7p;

In Fig.[3a, dashed lines show the unexplored gap edges. @electingp(;y as the next vantage
point, the corresponding cet};, becomes the portion Oﬁ(p(l)) which is across the parent gap
edge and extends away from the parent’s cell. The vantage jpejrand its cellc,y are generated
in the same way. There are now three verti¢gg,cy), (p(1), c1)), and(p(ay, c(2)) in Ip (Fig.'3b).
In a similar manner, two more vertice§y 1), ¢(2,1)) and (p(2,1,1), ¢(2,1,1)), have been added in
Fig.[3c. An intersection of positive area is found betweenggll ;) and the cell of another branch
of 7p, namelyc(). To solve thisoranch conflict the cellc(, ; 1) is discarded and a special marker
called aphantom wall(thick dashed line in Fig.13d) is placed where its parent gap edge was. A
phantom wall serves to indicate that no brancipfshould cross a particular gap edge. The vertex
(p(1,2); ¢(1,2)) added in Fig. Be thus can have no children. Finally, Fig. 3f shows the remaining
vertices(p(i1,1y, ¢1,1y) and(pa,1,1), ¢1,1,1)) added taZp so that the entire environment is covered
and the algorithm terminates.

Now we turn our attention to the pseudocode Table | for a precise desorigtitne algorithm.
The input is the environmeidt and a single poinpy € Ve. The output is the partition tre®>. We
have seen that each vertex of the partition tree is a vantage point - celihgaérticular, a cell is a
data structure which stores not only a polygonal boundary, but als@bdakeach of the polygon’s
gap edges. A gap edge label takes one of four possible vgaegnt , chi | d, unexpl or ed,
or phant om wal | . These labels allow the following exact definition of the partition tree.

Definition 5.1(Partition TreeZp)
The directed rooted partition trée has

(i) vertex set consisting of vantage point - cell pairs produced by theerimental partition
algorithm of Tablell, and

(i) adirected edge from vertep,, c¢) to vertex(pe, ce) if and only if ¢ has achi | d gap edge
which coincides with gar ent gap edge oé;.

Stepping through the pseudocode Table I, lines 1-5 compute and insebthesrtex(pg, cg) into

7Tp. Upon entering the main loop at line 7, line 8 selects a elrbitrarily from the set of cells

in 7p which haveunexpl or ed gap edges. Line 9 selects an arbitranexpl or ed gap edge

of ¢.. The next vantage point candidate will be placed on an endpointgfa call on line 10 to
the CHILD function of Tablé II. The PTVUIL is computed by the successor function on line 1 of
Tabl€ II. For anyl-tuple¢ and positive integei; successor(¢, i) is simply the(d + 1)-tuple which is

MULTI-AGENT DEPLOYMENT 7

(b)

P(2,1),€(2,1)

............

(©

Figure 3. This simple example shows how the incrementaitjpartalgorithm of Table | progresses (a)-(f).

Cell vantage points are shown by black disks. The portiorhefenvironment covered at each stage is

shown in grey (left) along with a corresponding abstractictem of the partition tree (right). A phantom

wall (thick dashed line), shown first in (d), comes about wttegre is abranch conflicti.e., when cells

from different branches of the partition tr@e are not openly disjoint. The final partition can be used to
triangulate the environment as shown in Fig. 4.

the concatenation af andi, e.g.,successor((2,1),1)) = (2,1, 1). The CHILD function constructs
a candidate vantage poipt and celle, as follows. In the typical case, when the parent eghas
more than three edges;’s vertices are enumerated counterclockwise figire.g., asy’s vertices
in Fig. 3a or Fig. 6. In the special caserptbeing a triangle, e.g., as the triangular cells in Fig.:&
vertices are enumerated such thatilands onc.'s parent gap edge. The vertexgWwhich is odd
in the enumeration is selectedas Occasionally there may touble vantage point&olocated),
e.g., ag(2) andp(s) in Fig.[6. We will see in Sec. 5.1 that thigrity-based vantage point selection

8 K.J. OBERMEYER, A. GANGULI, F. BULLO

P(2,1):€(2,1)

(d)

[Pa2-ca] [Peycen]

[Pay can] [Pa2-caa] [Pey ey

P(,1,1)r €(1,1,1)

)

Figure 3. (continuation)

schemads important for obtaining a special subset of the vantage points callexsptiree vantage
point set Returning to Table I, the final portion of the main loop, lines 11-17, chedietherc,
is in branch conflictor (p¢, ¢¢) should be added permanentlyIp. A cell ¢, is in branch conflict
with another celt, if and only if ¢ andc,: are not openly disjoint (see Fig. 5). The main algorithm
terminates when there are no more unexplored gap edggs in

An important difference between our incremental partition algorithm andath&anguli et al
[22] is that the set of cells computed by our incremental partition is not unitjuis is because
the freedom in choosing cell and gapy on lines 8-9 of Table! | allows different executions of the
algorithm to fill the same part of the environment with different branche®-0fThis may result
in different sets of phantom walls as well. A phantom wall is only created @1t of Table |
when there is a branch conflict. This discarding may seem computationallyfwdsteause the

MULTI-AGENT DEPLOYMENT 9

Table Il. Incremental Partition Subroutine

CHILD(€, 7p, (. 9)
1: £ « successor(¢, 1), whereg is theith nonparent gap edge of counterclockwise from

p¢s
2 if [Vee| > 3 then
enumerate,’s verticesl, 2, 3, . .. counterclockwise fronp,;
ese
enumerate:;'s vertices so thap, is assigned and the remaining vertices ef are
assigned and3
such that the vertex assigngds on thepar ent gap edge ot,;
6: p¢ — vertex ong assigned an odd integer in the enumeration;
7 ce f)(pg); . . o
8: truncatec, atg such that only the portion remains which is acrggsom p;
9: delete frome; any vertices which lie across a phantom wall frpm
10: for each gap edgg of ¢, do

11: if ¢’ ==g¢ then

arwn

12: labelg’ aspar ent in cg;

13: dseif ¢’ coincides with an existing phantom watlhen
14: labelg’ asphant omwal | in cg;

15: ese

16: labelg’ asunexpl or ed in c;

17: return (pg, ce);

Figure 4. The partition tree produced by the centralizedeimental partition algorithm of Tablé | or the

distributed deployment algorithm of Table VI can be useditmgulate an environment, as shown here for

the simple example of Fig. 3. The triangulation is cons&ddby drawing diagonals (dashed lines) from
each vantage point (black disks) to the visible environmventices in its cell.

environment could just be made simply connected by chodspitgantom walls (one for each hole)
prior to executing the algorithm. Such an approach, however, would nehbeable to distributed
emulation without a priori knowledge of the environment.

The following important properties we prove for the incremental partitionrélgo are similar
to properties we obtain for the distributed deployment algorithm in Sec. 6.

Lemma 5.4Star-Convexity of Partition Cells)
Any partition tree verteXpe, c¢) constructed by the incremental partition algorithm of Table |, has
the properties that

10 K.J. OBERMEYER, A. GANGULI, F. BULLO

(©

Figure 5. The incremental partition algorithm of Table | afistributed deployment algorithm of Table VI

may discard a cell; if itis in branch conflicwith another celk, already in the partition tree, i.e., whep

andcg and are not openly disjoint. In these three examples, bluesepts one cedl, red another celt,/,

and purple their intersectiaz N c./. A cell can even conflict with it's own parent If they enclosbale as
in (c).

(i) the cellc, is star-convex, and
(i) the vantage poinp, is in the kernel ot:.

Proof

Given a star-convex set, s#y let K be the kernel ofS. Suppose that we obtain a new $&tby
truncatingS at a single line segmeiitwho’s endpoints lie on the boundaf. It is easy so see
that the kernel ofS” containsK N .S’, thus.S’ must be star-convex ik N S’ is nonempty. Indeed
[could not possibly block line of sight from any point Ki NS’ to any pointp in S/, otherwise
p would have been truncated. Inductively, we can obtain aSsdly truncating the sef at any
finite number of line segments and the kernelSéfwill be a superset of’ N K. Now consider a
partition tree vertexXpe, c¢). By definition, the visibility polygonV(p;) is star-convex ang is in
the kernel. By the above reasoning, the vertex-limited visibility polygém) is also star-convex
and hagy in its kernel becausg(p,) can be obtained froi(p;) by a finite number of line segment
truncations (lines 8 and 9 of Table I1). Likewisg,must be star-convex with in its kernel because
ce is obtained fromV(p) by a finite number of line segment truncations at the parent gap edge and
phantom walls. O

Theorem 5.3Properties of the Incremental Partition Algorithm)
Suppose the incremental partition algorithm of Table | is executed on an eméri& with n
vertices andh holes. Then

MULTI-AGENT DEPLOYMENT 11

Do

Figure 6. The example used in Fig. 3 showed a typical incréah@artition in which there were neither
double vantage points nor any triangular cells. This examgh the other hand, shows these special cases.
Disks, black or white, show vantage points produced by tleeeimental partition algorithm of Table I.
Integers show enumerations of the cells used forphety-based vantage point selection scherfbe
double vantage points,) andps, are colocated. The cellgy), c(3y, ¢(2,1), ¢(3.1)s ¢(2,1,1) @Nde(s 1 1)

are triangular. The vantage points colored black arespia@se vantage poinfsund by the postprocessing
algorithm of Tablé IIl. Under the distributed deploymengaithm of Tablg VI, robotic agents position

themselves at sparse vantage points.

(i) the algorithm returns in finite time a partition tr@g such that every point in the environment
is visible to some vantage point,
(i) the visibility graph of the vantage pointS.is ¢({p¢|(pe,ce) € Tp}) consists of a single
connected component,
(i) the final number of vertices ifp (and thus the total number of vantage points) is no greater
thann + 2h — 2,
(iv) there exist environments where the final number of vertice&siis equal to the upper bound
n +2h — 2, and
(v) the final number of phantom walls is precisély

Proof

We prove the statements in order. The algorithm processespl or ed gap edges one by one
and terminates when there are no moen@xpl or ed gap edges. Once amexpl or ed gap edge
has been processed, it is never processed again because its Efchgphant om. wal | or
chi | d. Gap edges of cells are diagonals of the environment and there are ecbhan@g) —&on
possible diagonals, which is finite, therefore the algorithm must terminate in f|n|te|_temarna:2
guarantees that if the entire environment is covered by cells ghen every point is visible to some
vantage point. Suppose the final set of cells does not cover the entirereneint. Then there must
be a portion of the environment which is topologically isolated from the rethe®nvironment
by phantom walls, otherwise amexpl or ed gap edge would have expanded into that region.
However, this would mean that a phantom wall was created ggahent gap edge of a candidate

12 K.J. OBERMEYER, A. GANGULI, F. BULLO

(@) (b)

Figure 7. (a) An example of when the final number of vantagatpdn 7 is equal to the upper bound
n + 2h — 2 given in Theorem 5/3. (b) An example of when the number of fsaimR? where at least one
sparse vantage point is located is equal to the upper b{)&ﬁ%}‘;ﬂ given in Theorems 5.5 anhd 6.4.

cell which was not in branch conflict. This is not possible because a phawtil is only ever
created if there is a branch conflict (lines 12-14 Table 1). This completgw thé of statement (i).

Statement (i) follows from Lemma 5.2 together with the fact that every vantaige isplaced
on the boundary of its parent’s cell. Given two vantage pointgn say p. and pe, a path
through Gis.e ({pe|(pe, ce) € Tp}) from pe to per can be constructed as follows. Follow parent-
child visibility links up to the root vantage poipy, then follow parent-child visibility links from
py down top,,. Since such a path can always be constructed between any pair of evquiiags,
Guis,e ({pel(pe, ce) € Tp}) must consist of a single connected component.

For statement (iii), we triangulat& by triangulating the cells of» individually as in Fig! 4.
Each cellc; is triangulated by drawing diagonals frgza to the vertices of.. The total number of
triangles in any triangulation of a polygonal environment with holesis2h — 2 (Lemma 5.2 in
[6]). Since there is at least one triangle per cell and at most one vantageppr cell, the number
of vantage points cannot exceed the maximum number of trianglesh — 2.

Statement (iv) is proven by the example in Fig. 7a.

For statement (v), we argue topologically. Suppose the final number of phavatis were less
thanh. Then somewhere two branches of the parition tree must share a gap/i¢ige phantom
wall separating them. If this shared gap edge is not a phantom wall, it mesthise (1) a child in
branch conflict, or (2) unexplored. Either way, the algorithm would haee to create a cell there
but then deleted it and created a phantom wall; a contradiction. Now seipipere were more than
h phantom walls. Then a cell would be topologically isolated by phantom walis fne rest of the
environment. This is not possible because phantom walls can neverdiedcced the parent-child
gap edge between two cells. Since the final number of phantom walls can ber hestghnor greater
thanh, it must beh.

O

5.1. A Sparse Vantage Point Set

Suppose we were to deploy robotic agents onto the vantage points produtieel incremental
partition algorithm (one agent per vantage point). Then, as TheoremuasZigees, we would
achieve our goal of complete visibility coverage with connectivity. The nurobagents required
would be no greater than the number of vantage points, namel2h — 2. This upper bound,
however, can be greatly improved upon. In order to reduce the nunfib@ntage points agents
must deploy to, the postprocessing algorithm in Table Ill takes the partitiencgout by the
incremental partition algorithm and labels a subset of the vantage points tadlgplarse vantage
point set Starting at the leaves of the partition tree and working towards the rootgeaptants are
labeled eithenonspar se or spar se according to criterion on line 2 of Table lll. As proven in

MULTI-AGENT DEPLOYMENT 13

Table Ill. Postprocessing of Partition Tree

LABEL _VANTAGE _POINTSE, 7p)
1: while there exists a vantage poisg in 7p such thap, has not yet been labeled
and (p¢ is at a leafor all child vantage points gf; have been labeled do
if |Ve.| == 3 and p, has exactly one child vantage point labetgzhr se then
labelp; asnonspar se;
else
labelp; asspar se;

Theorem 5.5 below, the sparse vantage points are suitable for the acovask@nd their cardinality
has a much better upper bound than the full set of vantage points. All titageapoints in the
example of Figl. 3 are sparse. Hig. 6 shows an example of when only a srdpsat of the vantage
points is sparse.

Lemma 5.4Properties of a Child Vantage Point of a Triangular Cell)

Let (pe, ce) be a partition tree vertex constructed by the incremental partition algorithratdéT
and suppose; has a parent cet: which is a triangle. Thep, is in the kernel op,. Furthermore,
if p. has a parent vantage pop (the grandparent qf;), thenpy is visible top,.

Proof

The kernel of a triangular (and thus convex) eglis all of c.. By Lemma 5.2p,: is in the kernel of
¢¢. According to the parity-based vantage point selection scheme (line Stef My, p, is located
at a point common te¢/, ¢., andce, thereforep, is in the kernel ot and visible toc.

Theorem 5.%Properties of the Sparse Vantage Point Set)

Suppose the incremental partition algorithm of Table | is executed to completiam @mvironment

& with n vertices andi holes and the vantage points of the resulting partition tree are labeled by the
algorithm in Tablé I1l. Then

(i) every point in the environment is visible to some sparse vantage point,
(i) the visibility graph of the sparse vantage poigts ¢ ({p¢|(pe, ce) € Tp}) consists of a single
connected component,
(ii) the number of points ifR2 where at least one sparse vantage point is located is no greater than
Ln+22h71J , and

(iv) there exist environments where the upper bouf22=1 | in (jii) is met.

Proof

Statements (i) and (i) follow directly from Lemma 5.4 together with statements (i) andf (i)
Theorem 5.3.

For statement (iii) we use a triangulation argument similar to that used in [22hforonments
without holes. We use the same triangulation as in the proof of Theorém i5.34)F The total
number of triangles in any triangulation of a polygonal environment with hisles+ 2h — 2
(Lemma 5.2 in/[6]). Suppose we can assign at least one unique triangjevitenever, is sparse
and at least two unique triangles to all other sparse vantage point locatiend;,.... be the
number of sparse vantage point locations. Setifl¥parse — 1) + 1 = 2Ngparse — 1 t0 be less or
equal to the total number of trianglest+ 2k — 2 and solving forNy,..<e gives the desired bound

(n+2h—2)+1 n+2h—1

Ns arse < = .
P { 2 2
Indeed we can make such an assignment of triangles to sparse vantddeqgations. Our argument

relies on the parity-based vantage point selection scheme and the crimriabdling a vantage

14 K.J. OBERMEYER, A. GANGULI, F. BULLO

Agent Mode

expl ore
- é

(@) (b)

Figure 8. (a) In the distributed deployment algorithm of &Wl| each agent may switch betweleaad,
pr oxy, andexpl or e mode based on certain asynchronous events. Leader agentssaonsible for
maintaining a distributed representation of the partiti@e 7, proxies help establish communication for
solving branch conflicts, and explorers systematicallyigete throughZ, in search of opportunities to
become a leader or proxy. The agent mode color code is usednaig./10 and 12. (b) Even if a pair
of leader agents (black) are not mutually visible, theitsc@l: andc,/) may intersect as in Fig. 5, shown
here abstractly by a Venn diagram. Sending a proxy ageébﬂyplon aproxy touraround one of the cell
boundaries guarantees it will enter the cells’ intersectiorthat communication between leaders can be
proxied. The leaders can then establish a local commonereferframe and compare cell boundaries in
order to solve branch conflicts.

point asspar se on line 2 of Table Ill. To any sparse vantage point location, say afther than
the root, we assign one triangle in the parent cell. The triangle in the pastris the triangle
formed by its parent gap edge together with its parent’s vantage point. cfosparse vantage
point location, say ope, including the root, we assign additionally one triangle in the gellf ¢,
has no children, then any triangle éa can be assigned te. If ¢ has children (in which case it
must have greater than one triangle) we need to check that it has mordesigman child vantage
point locations with odd parity. Suppose has an even number of edges. Then this number of
edges can be writtetyn wherem > 2. The number of triangles it is 2m — 2 and the number
of odd parity vertices irce where child vantage points could be placedris- 1. This means at
mostm — 1 triangles inc, are assigned to odd parity child vantage point locations, which leaves
(2m —2)—(m—1)=m—1>1 triangles to be assigned to the locationpgf The case ot;
having an odd number of edges is proven analogously.
Statement (iv) is proven by the example in Fig. 7.
O

6. DISTRIBUTED DEPLOYMENT ALGORITHM

In this section we describe how a group of mobile robotic agents can disttipugenulate the
incremental partition and vantage point labeling algorithms of[Sec. 5, thus gdherDistributed
Visibility-Based Deployment Problem with Connectivity. We first give a rougbreiew of the
algorithm, called DISTRIBUTECDEPLOYMENT(), and later explain in more detail with aid of
the pseudocode in Table VI. Each agehias a local variable modle among others, which takes
a valuel ead, pr oxy, orexpl or e. For short, we call an agent Iread mode aleader, an agent
in pr oxy mode gproxy, and an agent iexpl or e mode arexplorer. Agents may switch between
modes (see Fig. 8a) based on certain asynchronous events. Legttleratssparse vantage points
and are responsible for maintaining in their memory a distributed representéttmnpartition tree
T» consistent with Definition 5]1. By distributed representation we mean that ezadérigetains

in its memory up to twovertices of responsibility(p[f], c[f]) and(p[zi],c[zi]), and it knows which gap

MULTI-AGENT DEPLOYMENT 15

Cell Status

cont endi ng

N .
" deleted

@

(b) (© (d)

Figure 9. (a) In the distributed deployment algorithm of any cell in a leader's memory has a
status which takes the valuet r act i ng, cont endi ng, orper nanent . (b) Each cell status is initially
retracting. The status of a retracting cell is advancea tmt endi ng after the execution of a proxy
tour in which the cell is truncated as necessary to ensuraarch conflict with any permanent cells. (c)
In a second proxy tour, a contending cell is deleted if it isniddo be in branch conflict with another
contending cell of smaller PTVUID (according to total oridigrDef.[6.2), otherwise its status is advanced
to per manent . (d) Only when a cell has attained staper manent can any child cells be added at its
unexplored gap edges (continued in Fig. 10). The cell stailes code is used in Fig. 10 as welllas 12.

eee
eee

Figure 10. Color codes correspond to those in Fig. 8[and B) @nce a cell has statyser manent ,

arriving explorer agents can be sent to become leaders ldt gdy edges. (c-f) Any remaining explorer

agents continue systematically navigating the partitiee th search of a leader or proxy tasks they could
perform.

16 K.J. OBERMEYER, A. GANGULI, F. BULLO

Figure 11. In the distributed deployment algorithm of Talfle explorer agents search the partition tree
Tp depth-first for leader or proxy tasks they could perform. Aerdgn a cell, say:, can always order
the gap edges af;, e.g., counterclockwise from the parent gap edge. The dapttsearch progresses by
the explorer agent always moving to the next unvisited childnexplored gap edge in that ordering. The
agent thus moves from cell to cell deeper and deeper untifgdevertex with no children) is found. Once
at a leaf, the agent backtracks to the most recent vertexumifsited child or unexplored gap edges and
the process continues. As an example, (left) integers (nbetconfused with PTVUIDs) show the depth-
first order an agent would visit the vertices Bf in Fig.[3f if the gap edges in each cell were ordered
couterclockwise from the parent gap edge. If the agentanisteses a gap edge ordering cyclically shifted
by one, then (right) shows the different resulting deptstfirder. If each agent uses a different gap edge
ordering, e.g., cyclically shifted by their UID, then difést branches of » are explored in parallel and the
deployment tends to cover the environment more quicklyFef./10.

edges of those vertices lead to the parent and child vertic&s [ihwe call (p[f],c[f]) the primary

vertexof agent: and (pg"],cg"]) the secondary vertexA leader typically has only a primary vertex
in its memory and may have also a secondary only if it is either positioned (lJailade vantage
point, or (2) at a sparse vantage point adjacent to a nonsparse egatiat Each cell in a leader’s
memory has a status which takes the valeg¢ r act i ng, cont endi ng, or per nranent (see
Fig.[9). Only when a cell has attained stapes manent can any childZ, vertices be added at its
unexplored gap edges.

Remark 6.13 Cell Statuses)

In our system of three cell statuses, a cell must go through two stepsebattaining status
per manent . Intuitively, the need for two steps arises from the fact that an agent finss
determine the boundary of its cell before it can even know what otherarelis branch conflict or
place children according to the parity-based vantage point selectiomschience, the first proxy
tour allows truncation of the cell boundary at all permanent cells. Only @hi#e, when the boundary
is known, is the second proxy tour run and the cell deconflicted with otheending cells. Note
that even in the centralized incremental partition algorithm two steps had to ée igka newly
constructed cell: the cell had to be (1) truncated at existing phantom wadlshan (2) deleted if it
was in branch conflict.

The job of a proxy agent is to assist leaders in advancing the status ofctilksrtowards
per manent by proxying communication with other leaders (see/Fig 8b). Any agent whichtis
a leader or proxy is an explorer. Explorers merely move in depth-firgragstematically about
T» in search of opportunity to serve as a proxy or leader (se€ Fig. 10 dndd simplify the
presentation, let us assume for now that, as in the examples Fig. 3 and Fig. d@,lvle vantage
points or triangular cells occur. Under this assumption, each leader witldponsible for only one
Tp vertex, its primary vertex, and all vantage points will be sparse. The yimglat begins with all
agents colocated at the first vantage p@intOne agent, say ageftis initialized tol ead mode

with the first cellc[gol] = cp = V(py) in its memory. All other agents are initialized &xpl or e
mode. Agenb can immediately advance the statugpfo per manent because it cannot possibly

§The subscripts of a leader agentirtices of responsibilitare not to be confused with PTVUIDs, i.ep[f],c[l"’]) and
(p[zi] , c[;]) are not in general the same @81, c(1y) and(p(z), ¢(2))-
Twe did attempt to simplify the distributed deployment alogrithrd arake the cells only go through a single step, i.e.,

a single proxy tour to become permanent, however, there seenotbdiedifficulties with such an approach, particularly
with time complexity bounds.

MULTI-AGENT DEPLOYMENT 17

(a) (b)

(d) (e)

! . !

Figure 12. With color codes from Fig] 8 and 9, here is a simpéargle of agents executing the distributed
deployment algorithm of Table VI. (a) Agents enter the eswinent and the leader initializes the root cell
to statusper manent because no branch conflicts could possibly exist yet. Egplagents move out to
become leaders of child cells. (b) The lower child cell igiatized with statuper manent because it has
no gap edges and thus cannot be in branch conflict. The uppehild cells are initialized toet r act i ng
because they could be in branch conflict at unexplored gapsedgieed there is a branch conflict at the
dark red overlap region. The remaining explorer agentsimoatmoving out to the new cells. (c) Once
the explorers reach the retracting cells, they become @soaind run tours around the cells to check for
branch conflict with permanent cells. (d) After the first pragurs, the child cells’ statuses are advanced to
cont endi ng and each proxy run a second tour. (e) During the second poaxg,tthe branch conflict is
detected between contending cells and the cell with high®RD is deleted. The agents that were in the
deleted cell move back up the partition tree and continuéoeixig depth-first. The other proxy becomes a
leader of a new child cell initialized toet r act i ng. (f) One of the explorers arrives at the retracting cell
and begins a proxy tour to advance the cetttmt endi ng. (g) The proxy runs a second tour and advances
the cell toper manent and the partition is completed. (h) Remaining explorersioast navigating the
partition tree depth-first in search of tasks; this adds rolass because they will be able to fill in anywhere
an agent may fail or a door may open.

be in branch conflict (no other cells even exist yet); in general, howeed#ls can only transition
between statuses when a proxy tour is executed. Agsees all the explorers in its cell and assigns
as many as necessary to become leaders so that there will be one newplesiiened on each

18 K.J. OBERMEYER, A. GANGULI, F. BULLO

unexplored gap edge of. The new leader agents move concurrently to their new respective eantag
points while all remaining explorer agents move towards the next cell in thpihdist ordering.
When a leader first arrives at its vantage point, gayof the cellc, it initializes ¢, to have status
retracting and boundary equal to the portion Bfp:) which is across the parent gap edge
and extends away from the parent’s cell. When an explorer agent donsesh a newly created
retracting cell, the leader assigns that explorer to become a proxy and flfyoxy tour which
traverses all the gap edges @f During the proxy tour, the proxy agent is able to communicate
with any leader of a permanent cell that might be in branch conflict witlzgh&he cellc, is thus
truncated as necessary to ensure it is not in branch conflict witpanganent cell. When this

first proxy tour is complete, the status &f is advanced t@ont endi ng. The leader ot then
assigns a second proxy tour which again traverses all the gap edge®aofing this second proxy
tour, the leader communicates, via proxy, with all leaders of contendingveeith come into line

of sight of the proxy. If a branch conflict is detected betwegand another contending cell, the
agents have ahoot-out they compare PTVUIDs of the cells and agree to delete the one which is
larger according to the following total ordering.

Definition 6.2(PTVUID Total Ordering)

Let & and¢, be distinct PTVUIDs. If¢; and&,; do not have equal depth, thén < &, if and only
if the depth of¢; is less than the depth gf. If £, andé; do have equal depth, then < & if and
only if &; is lexicographically smaller thaﬁm

When a celk, with parentc, is deleted, two things happen: (1) The leadetomarks a phantom
wall at its child gap edge leading tg, and (2) all agents that were ia become explorers, move
back intoc., and resume depth-first searching for new tasks as in Fig. 12e. If thrdspeoxy tour

of a cellc, is completed without, being deleted, then the statuscefis advanced tper manent

and its leader may then assign explorers to become leaders ofZghitdrtices at,'s unexplored
gap edges. Agents in different brancheggfcreate new cells in parallel and run proxy tours in an
effort to advance those cells to stapsr mranent . New 7p vertices can in turn be created at the
unexplored gap edges of the new permanent cells and the processiesnitil, provided there are
enough agents, the entire environment is covered and the deploymentpiete.

We now turn our attention to pseudocode Table] VI to describe DIS-
TRIBUTED_DEPLOYMENT() more precisely. For brevity, this pseudocode is written at a
fairly high level. The interested reader may view more implementation details in olnital
report available electronically [25]. The algorithm consists of three tlw@éich run concurrently
in each agent: communication (lines 1-6), navigation (lines 7-13), and altstiate transition (lines
14-21). An outline of the local variables used for these threads is shoWabled IV and V. The
communication thread tracks the internal states of all an agent’s visibility n@igh®ne could
design a custom communication protocol for the deployment which would makeefficient use
of communication bandwidth, however, we find it simplifies the presentation toreesagents have
direct access to their visibility neighbors’ internal states via the data steubteighborDatd’!.
The navigation thread has the agent follow, at maximum velogjty,, a queue of waypoints
called Routé! as long as the internal state compone[zijgoxicd.WaiLSet is empty (it is only ever
nonempty for a proxy agent and its meaning is discussed further in SectjoimBe2waypoints can
be represented in a local coordinate system established by the agsntireesit enters a new cell,
e.g., a polar coordinate system with origin at the cell’s vantage point. In theahtgate transition
thread, an agent switches betwdesad, pr oxy, and expl or e modes. The agent reacts to
different asynchronous events depending on what mode it is in. Wigthe=details of the different
mode behaviors in the following Sections 6.1, 6.2,land 6.3.

I For example(1) < (2) and(1,3) < (3,2), but(3,2) < (1,3,1).

MULTI-AGENT DEPLOYMENT 19

Table IV. Agent Local Variables for Distributed Deployment

Use Name Brief Description
uIDl = agent Unique IDentifier
In_Buffer!! FIFO queue of messages received from

Communication other agents

NeighborDatd’! data structure which tracks relevant state
information of visibility neighbors

statechangeinterrupt’! booleant r ue if and only if internal state
has changed between the last and curtent
iteration of the communication thread

new.visible_agentinterrupt’! | boolean,true if and only if a new
agent became visible between the last and
current iteration of the communication

thread
o Route’! FIFO queue of waypoints
Navigation o
pl, plil w position, velocity, and velocity input
modé? agent mode takes a vallead, pr oxy,
orexpl ore

VantagePoints? := (p[gj,pg) vantage points used ihead mode for
distributed representation ofp; may
have size 0, 1, or 2; each. may be
labeled eithespar se ornonspar se

Celld? := (c[gll,cg) cells used in ead mode for distributed
representation of»; may have size 0, 1,
or 2; cell fields shown in Tab. V

Internal State

C[gir],mxied used inpr oxy mode as local copy of cell
being proxied
b e € PTVUIDs of current and lasT vertices

visited in depth-first search; used In
expl or e mode to navigat&,r

6.1. Leader Behavior

The LEAD() subroutine of the internal state transition thread, called on lhefITablel VI, is
shown in Table VII with the behavior grouped into four sections: attemptozlbtruction (lines
1-6), assign tasks (lines 7-11), react to deconfliction events (line}2aAd propagate sparse
vantage point information (lines 21-30). A leader attempts to construct aseglte, whenever it
first arrives atp. In order to guarantee an upper bound on the number of agents ckdpyirthe
deployment (Theorem 6.4), the leader must enforce that any cell ittadfis contains at least
one unigue triangle which is not in any other cell of the distribufpdepresentation. This can be
accomplished by the leader first looking at its NeighBatta to see if the parent gap edge, call,it
is contained in the cell of any neighbor other than the parent. If not, theexieeence of a unique
triangle is guaranteed because cell vertices always coincide with emergrvertices. In that case
the agent safely initializes the cell teet r act i ng status and waits for a proxy agent to help it
advance the cell’'s status towander manent . If, however,g is contained in a neighbor cell other

20 K.J. OBERMEYER, A. GANGULI, F. BULLO

Table V. Cell Data Fields for Distributed Deployment

Name Brief Description

13 PTVUID (Partition Tree Vertex Unique IDentifier)

c¢.Boundary| polygonal boundary with each gap edge labeled either as
par ent, chi | d, unexpl or ed, orphant omwal | ; child
gap edges may be additionally labeled with an agent UID if
that agent has been assigned as leader of that gap edge

ce.status | cell status may take a valuet r act i ng, cont endi ng, or
per manent

ce.proxy-uid | UID of agent assigned to proxy; takes valud) if no proxy
has been assigned

ce.Wait Set | set of PTVUIDs used by proxy agents to decide when they
should wait for another cell's proxy tour to complete before
deconfliction can occur, thus preventing race conditions

Table VI. Distributed Deployment Algorithm

DISTRIBUTED.DEPLOYMENT()

1: { Communication Threag
2: while true do .
3: in_message- In_Bufferl’). PopFirst();

4: update Neighbabatd’ according to inmessage;
5. if statechangeinterrupt’! or visible_agentinterrupt! then
6: broadcast internal state information;
7: { Navigation Thread
8: while true do)
9: while Routé? is not emptyand pl” - Routé’.First() and c[gimxied.WaiLSet is empty
do
10: ull — velocity with magnitude:m,.x and direction towards RouteFirst();
11: ull —o;
12: if plY == Routéd’ .First() then
13: Routd’ .PopFirst();

14: { Internal State Transition Thregd
15: while true do

16: if modé’ ==1 ead then

17: LEAD(); { See Tab. VII}

18: elseif modé” ==proxy then
19: PROXY(); { See Tab. VIII}

20: elseif modé’ ==expl ore then
21: EXPLORE();{ See Tah. IX}

than the parent, then the leader may have to either switch to proxy mode tofpr@nother leader
in line of sight (if the candidate cell is primary), or else wait for the othertoelie proxied (if the
candidate cell is secondary). If the agent determines that a contendegroanent cell other than
the parent containg, then it deletes the cell and a phantom wall is labeled.

A leader agent may assign tasks once it has initialized cell(s) in its memorysStgmment may
be of an explorer to become a leader of a child vertex, of an explorer torteea proxy, of a leader

MULTI-AGENT DEPLOYMENT 21

Table VII. Distributed Deployment Subroutine

LEAD()
1. { Attempt cell construction
2: if there is a vantage poipt in VantagePointd? for which no cell has yet been constructed
and plil == pe then

3: if atleastone triangle can be made available:fothen

4 initialize ¢, with statusr et r act i ng and insert into Cellé‘l;
5. ese

6: delete(pe, c¢);

7: { Assign tasks

8: if Celld” has a permanent cell with unexplored gap eggéen
9: assign an agent to become leadey;at

10: elseif Celld” contains nonpermanent cey] in need of a proxythen
11: assign some agent to proxé?];

12: { React to deconfliction evenis
13: if cell ¢, in Celld? corresponds to a caigmxied in NeighborDatd’ then

14: update alk, data fields to matchgj

Lo
roxied

15: if NeighborDatd’ shows a proxy has deleted a cell corresponding: tm Cells’ or (
NeighborData® shows contending cefigj]mxied in branch conflictvith contending celt,

in Cells” and ¢/ . | <¢) then

16: delete(pg, c¢);

17: if NeighborDatd? shows a cell has been deleted at child gap edgkcell ce in Cells?
then
18: labelg asphant omwal | in cg;

19: if NeighborDatd’! shows a proxy tour was successfully completed without ieldor a
cell ¢ in Celld? then

20: advancer.statusye.proxy.uid «— 0;

21: { Propagate sparse vantage point information

22: if there is an unlabeled vantage pajtin VantagePointd? with permanent celte in
Cells” and ((pg,ce) is a leafor Cell§’ and NeighbaData®) show all child vantage
points have been labelgdhen

23 if |Ve| ==3 and Cells” or NeighborDatd’ shows a child vantage point labeled
spar se then

24: labelp; asnonspar se;
25 ese
26: labelp; asspar se;

27: if Celld? contains exactly one cell; with p, labeledspar se and pl? == p, and

NeighbotDatd" shows a celt;: which is the parent of; and p is labelednonspar se
then
28: insertc. into Celld’] andp, into VantagePointéi];

29: if NeighborDatd” shows a leader agepiith p;’/ labeledspar se and ¢/} == ¢/} and
¢Vl is the parent PTVUID ot! then
30: clearp[gi andcg; Routé’ — straight path tq)gl];

to become a proxy, of itself to lead a second@pyvertex which is the child of its primary vertex
(this happens when the primary vertex is a triangle), or of another leadesdoondary vertex at a
double vantage point. Note that in making the assignments, all vantage peist&derted according

22 K.J. OBERMEYER, A. GANGULI, F. BULLO

Table VIII. Distributed Deployment Subroutine

PROXY()

1: if Routé” is nonemptyand NeighborDatd® shows proxied cell has not been deleted

then

2:if cproxied-Status =¥ et racti ng then

3 { Truncatece .., at permanent cell

4 if NeighborDatd"! shows permanent celf in branch conflicwith cgmxied then

5: truncatee,) ateg;

6 { Prevent race conditions and deadlgck

7 if NeigthtData{’” shows contending cetf: in branch conflicwith c,[;fimxied

and c¢.proxy.uid # ¢ and (g[pil]“oxic 4 & ce.Wait Setor ¢ < él[joxicd) then
8: l WaitSet—c!) WaitSetu¢;
proxied £prux1ed

9: else 4
10: c,[;j)mxied Wait Set— c[g’imxied Wait Set\ ¢;
11: eseif ¢proxica-Status =ont endi ng then
12: { Shoot-out with other contending cells
13: if (NeighborDatd® shows contending ced: in branch conflictwith c[gim . and

f < 5Elloxie.d) then
14: deletec[g] o modé’ — expl or e;
proxie
15: { Prevent race conditions and deadlgck
16: if NeighborDatd" shows retracting cel; in branch conflicwith c[g] »
proxie

and c¢.proxy.uid # ¢ and ('fgl]roxied ¢ ce.Wait Setor ¢ < el) then

proxied

17: A waitSet—) waitSetu ¢;
Eproxied Eproxied

18: else 4

19: AV waitSet— ¢! wait Set) ¢;
gproxled Eproxzed

20: else

21: enter previous mode, explore or lead;

to the samgarity-based vantage point selection schareed in the incremental partition algorithm
of Sec!5.

So that the distributed representationZf remains consistent, a leader must react to several
deconfliction events. If a proxy truncates the boundary of a retractingledites a contending cell,
advances the status of a cell, or adds/removes PTVUIDs to a cell'sS&aithen the corresponding
leader of that cell must do the same. In fact, whenever two agents (eitbeiep or leaders)
communicate and their contending cells are in branch conflict, the cell with low&d X will be
deleted. Every such cell deletion results in a phantom wall being markedpatbat cell. Although
it is not stated explicitely in the pseudocode, note that when a cell is deletéebiier must wait
briefly at the cell's vantage point until any agent that was proxying coraek to the parent cell;
otherwise the proxy could lose line of sight with the rest of the networkptbay tour is completed
successfully without cell deletion, then the cell status is advanced towardsanent .

By settling only to sparse vantage points, fewer agents are needed snmtpeafull coverage.
This is accomplished by agents swaping permanent cells with other leadasshirasvay that
the information about which vantage points are sparse is propagaté¢ whenever a leaf is
discovered. Each cell swap involves an acquisition by one agent (lifr@8Pand a corresponding
surrender by another (lines 29-30).

MULTI-AGENT DEPLOYMENT 23

Table IX. Distributed Deployment Subroutine

EXPLORE()
1: if NeighborDatd! shows a permanent cey} where¢ == ¢l then
2. ¢ — PTVUID of next vertex indepth-first ordering
3: if gap edge at¢’ has already been assigned a leatiean
4: { Continue exploring
= fl[zlau]st H ggl]lrrent; ggll]lrrent - é-/;
6: Routd’ — local shortest path to midpoint gfthroughc,;
7. dseif gap edge at¢’ has agent labeled as its leadethen
8: { Become leade}
9: modéi] — | ead; pgl] — per;
10: Routé’! — local shortest path to;: throughc,;
11: else if NeighborDatd’l shows a celke such thatee.proxy.uid == and & # £
then
12: { Become proxy}
13: modé’ — proxy; C[gzimxied —cg;

14: Routé” — tour which traverses all gap edgescgfand returns to parent gap edge;
15: if NeighborDatd?! shOWSCEm has been deletethen

16: { Move up partition tree aC\WeTS);from deleted cell

17 Routd!) — local shortest path towards, _,; swape!’), ande!”

current’

6.2. Proxy Behavior

The PROXY() subroutine of the internal state transition thread, called on @nef Table VI, is
shown in Table VIII. One of two main behaviors are executed dependinghether the proxied
cell has statug et r act i ng (lines 2-10) orcont endi ng (lines 11-19). Suppose an agens

proxying for a cellce in leader agenj’s memory. Then ageritkeeps a local copy aof; in clt

€proxied

and modifies it during the proxy tour. Agefitupdatesc, to matchc[gimxicd whenever a change

occurs. If agent is proxying for a retracting cell, then it traverses the gap edgegigiied while
truncating the cell boundary at any encountered permanent cells iohbcanflict. The goal is for
the retracting proxied cell to not be in branch conflict with any permandist log the end of the
proxy tour when its status is advanceattmnt endi ng. If agent: encounters a contending cell, say
cer, and the criteria on line 7 are satisfied, then agentist pause its proxy tour, i.e., pause motion
until c;; becomes permanent or deleted. If the proxy were not to pause, thenldt waothe risk of
the contending cell becoming permanent after the opportunity for the poopgrform truncation
had already passed. The pausing is accomplished by agdimthe cell fieldcg]mied .Wait Set read
by the navigation thread. Once the proxy tour is over, the leader of théegroell advances the
cell's status tacont endi ng and the proxy agent enters its previous mode, either explore or lead.
If agent: is proxying for a contending cell, then the goal is for that cell to not beamtin conflict
with any other contending cells by the end of the proxy tour, if the cell's statissbe advanced to

per manent . To this end, agenttraverses the gap edgesaéfj)‘mmd while comparingfl[fr]oXied with
the PTVUID of every encountered contending cell in branch conflict \A?j:h)xd If a contending

cell with PTVUID less tharfgloxied is encountered, then the proxied cell is deleted and agent
heads straight back to the parent gap edge where it will end the proxambouenterexpl or e
mode. If agent encounters a retracting cell, say, and the criteria on line 16 are satisfied, then
agenti must pause its proxy tour, i.e., pause motion, uftilbecomes contending or truncated
out of branch conflict. If the proxy were not to pause, then it would renrisk of the retracting

24 K.J. OBERMEYER, A. GANGULI, F. BULLO

cell becoming contending after the opportunity for the proxy to perfornouiiéiction had already
passed. The pausing is accomplished by addinip the cell fieldc[;i _,-Wait Set read by the

roxie

navigation thread. Finally, if a contending cell with PTVUID less tlﬁé\hxiod iS never encountered,
then the leader of the proxied cell advances the cell’s statpgtaranent and the proxy agent
entersexpl or e mode.

Note that the use of PTVUID total ordering (Definition 6.2) on lines 7,13, andfIBROXY()
precludes the possibility of both (tace conditionsn which the status of cells is advanced before
the proper branch deconflictions have taken place, andd€ajlocksituations where contending
and retracting cells are indefinitely waiting for each other.

6.3. Explorer Behavior

The EXPLORE() subroutine of the internal state transition thread, called e1irof Tablé VI, is
shown in Tablé IX. Of all agent modesxpl or e behavior is the simplest because all the agent
has to do is navigat@, in depth-first order (see Fig. 10 and/11) until a leader agent assigns
them to become a leader at an unexplored gap edge or to perform atpsixyrhe local shortest
paths between cells (lines 6,10, and 17) can be computed quickly and easily sibility graph
method[26]. If the current cell that an explorer agent is visiting is eeéetdd because of branch
deconfliction, the explorer simply moves gp and continues depth-first searching. By having
each agent use a different gap edge ordering for the depth-finsthsdhe deployment tends to
explore many partition tree branches in parallel and thus converge mickdygin our simulations
(Sec/ 6.5), we had each agent cyclically shift their gap edge orderirtheiy UID, subject to
the following restriction important for proving an upper bound on numbereqtiired agents in
Theorem 6.4.

Remark 6.3Restriction on Depth-First Orderings)

Each agent in an execution of the distributed deployment may s&ardepth-first using any child
ordering as long as every pair of child vertices adjacent at a doubtagapoint are visited in the
same order by every agent.

6.4. Performance Analysis

The convergence properties of the Distributed Depth-First Connectptbydeent Algorithm of
Tabl€ VI are captured in the following theorems.

Theorem 6.4Convergence)

Suppose thaV agents are initially colocated at a common pgint Vg of a polygonal environment

& with n vertices andh holes. If the agents operate according to the Depth-First Connected
Deployment Algorithm of Table VI, then

(i) the agents’ visibility grapl@, s ¢ (P) consists of a single connected component at all times,

(ii) there exists a finite time*, such that for all times greater thahthe set of vertices in the
distributed representation of the partition trBeremains fixed,

(i) if the number of agentsv > L%J, then for all times greater tharn every point in the
environmen€ will be visibile to some agent, and there will be no more thaghantom walls,
and

(iv) if N > |2E2h=1] then for all imes greater thah every cell in the distributed representation
of 7p will have statugper manent and there will be precisely phantom walls.

Proof

We prove the statements in order. Nonleader agents, as we have defiindzblizaior, remain
at all times within line of sight of at least one leader agent. Leader agentgdikeemain in the
kernel of their cell(s) of responsibility and within line of sight of the leadgerat responsible for
the corresponding parent cell(s). Given any two agents; saylj, a path can thus be constructed
by first following parent-child visibility links from agentup to the leader agent responsible for

MULTI-AGENT DEPLOYMENT 25

the root, then from the leader agent responsible for the root down td age€he agents’ visibility
graph must therefore consist of a single connected component, whigtement (i).

For statement (i), we argue similarly to the proof of Thedrem 5.3(i). Duriegitployment, cells
are constructed only at unexplored gap edges. A cell either (1) edsdahough a finite number of
status changes or (2) it is deleted during a proxy tour. Either way, e#léh orly modified a finite
number of times and only one cell is ever created at any particular unexlplfap edge. Since
unexplored gap edges are diagonals of the environment and theralafinely many possible
diagonals, we conclude the set of vertices in the distributed represergéfi@nmust remain fixed
after some finite time*.

For statement (iii), we rely on an invariant: during the distributed deploymigatrithm, at
least two unique triangles can be assigned to every leader agent whucht keast one cell of
responsibility, other than the root cell, in its memory; at least one unique leiaag be assigned
to the leader agent which has the root cell in its memory. One of the triangles ie&der’s own
cell (primary or secondary) and its existence is enforced by a leadsmevir it initializes a cell in
Table VII. The second triangle is in a parent cell of a cell in the agent’s mgnfibe existence of
this second triangle is ensured by the depth-first order restriction stiputaR&imark 6.8 together
with the parity-based vantage point selection scheme. Remembering that timeumesxumber of
triangles in any triangulation is + 2h — 2 and arguing precisely as we did for the sparse vantage
point locations in the proof of Theorem 5.5(iii), we find the number of agesdsired for full
coverage can be no greater thpﬁ%]. As in the proof of Theorem 5.3(v), the number of
phantom walls can be no greater thabecause if it where then some cell would be topologically
isolated.

Proof of statement (iv) is as for statement (iii), but because there is dreeagent and depth-
first is systematic, the extra agent is guaranteed to eventually proxy aniniegnaonpermanent
cells intoper manent status and create phantom walls to separate all conflicting partition tree
branches. O

Remark 6.§Near Optimality without Holes)

As mentioned in Sec¢.|1n — 2)/2 guards are always sufficient and occasionally necessary for
visibility coverage of any polygonal environment without holes. This me¢haswhenh = 0, the
bound on the number of sufficient agents in Thedrem 6.4 statement (iii)sdfffamn the worst-case
optimal bound by at most one.

Theorem 6.§Time to Convergence)

Let & be an environment as in Theorem|6.4. Assume time for communication andsgirggere
negligible compared with agent travel time and thdtas uniformly bounded diameter as— co.
Then the time to convergenceé in Theorem 6.4 statement (ii) i©(n? + nh). Moreover, if the
maximum perimeter length of any vertex-limited visibility polygondris uniformly bounded as
n — oo, thent* is O(n + h).

Proof

As in the proof of Theorem 6.4, every cell which is never deleted haastttee unique triangle and
there are at most + 2h — 2 triangles total, therefore there are at most 2h — 2 cells which are
never deleted. The maximum number of phantom walls ever created lseoren 6.4). Since cells
are only ever deleted when a phantom wall is created, at mostls are ever deleted. Summing
the bounds on the number cells which are and are not deleted, we see theitokeer of cells
any agent must ever visit during the distributed deployment+4s2h — 2 + h = n + 3h — 2. Let

lq be the maximum diameter of any vertex-limited visibility polygonéinThen, neglecting time
for proxy tours, an agent executing depth-first searclypmwill visit every vertex of 75 in time

at most2uaxla(n + 3h — 2). Now Letl, be the maximum perimeter length of any vertex-limited
visibility polygon in £. Then the total amount of time agents spend on proxy tours, counting two
tours for each cell, i8umaxlp(n + 31 — 2). Exploring and leading agents operate in parallel and at
most every agent waits for every proxy tour, so it must be that

t* < 2umax(lp + la)(n + 3h — 2).

26 K.J. OBERMEYER, A. GANGULI, F. BULLO

While the diameter o€ being uniformly bounded implieg; is uniform bounded], may be
O(n). O

The performance of a distributed algorithm can also be measured byragerdry requirements
and the size of messages which must be communicated.

Lemma 6.{Memory and Communication Complexity)

Let £ be the maximum number of vertices of any vertex-limited visibility polygon in the
environmen and supposé€ is represented with fixed resolution. Then the required memory size
for an agent to run the distributed deployment algorithd@ (4 %) bits and the message siz&isk)

bits.

Proof

The memory required by an agent for its internal state is dominated by its adli@$ponsibility

(of which there are at most two) and proxy cell (at most one). A celliregO(k) bits, therefore
the internal state require8(k) bits. The overall amount of memory in an agent is dominated by
NeighborDatd’, which holds no more tha internal states, therefore the memory requirement
of an agent iXD(Nk). Agents only ever broadcast their internal state, therefore the mesizage
O(k). O

6.5. Simulation Results

We used C++ and the VisiLibity library [27] to simulate the Distributed Depth-Firgtl@®gnent
Algorithm of Table/VI. An example simulation run is shown in Fig. 1 for an envinent
with n =41 vertices andh =4 holes. An animation of this simulation can be viewed at
http://notion. ne. ucsb. edu/ ~kar |/ novi es/ dwh. nov . To reduce clutter, we have
omitted from this larger example the agent mode and cell status color codemu=gds, 9, 10,
and 12. The environment was fully covered in finite time by only 13 agents, vihiged is less
than the upper bound*22=1 | = 24 given by Theorem 6.4.

6.6. Extensions

There are several ways that the distributed deployment algorithm cairirdulyd extended for
robustness to agent arrival, agent failure, packet loss, and renobvah environment edge.
Robustness to agent arrival can be achieved by having any nevisagerply enterexpl or e
mode, settlngfcurrent to be the PTVUID of the first cell they land in, and settlaﬂ[Qst to be the
parent PTVUID oft...rent - The line-of-sight connectivity guaranteed by Theorem 6.4 allows single
agent failures to be detected and handled by having the visibility neighbarfaded agent move
back up the partition tree as necessary to patch the hole left by the failatd &Bge robustness to
packet loss, agents could add a receipt confirmation and/or parity chetdcgl. If a portion of the
environment were blocked off during the beginning of the deploymerthiaut were revealed by an
edge removal (interpreted as the “opening of a door”), the deploynoend proceed normally as
long as the deleted edge were labeled agragx pl or ed gap edge in the cell it belonged to.

Less trivial extensions include (1) the use of distributed assignmentthlgsrsuch as [28, 29]
for guiding explorer agents to tasks faster than depth-first search) pefforming the deployment
from multiple roots, i.e., when different groups of agents begin deploymamtdifferent locations.
Deployment from multiple roots can be achieved by having the agents tackamt &lentifier to
their PTVUID, however, it appears this would increase the bound on nuafilzgrents required in
Theorem 6.4 by up to one agent per root.

7. CONCLUSION

In this article we have presented the first distributed deployment algorithmhvgalves, with
provable performance, the Distributed Visibility-Based Deployment Problém@onnectivity in
polygonal environments with holes. We began by designing a centralizegimieatal partition

MULTI-AGENT DEPLOYMENT 27

algorithm, then obtained the distributed deployment algorithm by asynchsodaiributed
emulation of the centralized algorithm. Given at leg&t%=! | agents in an environment with

n vertices andh holes, the deployment is guaranteed to achieve full visibility coverage of the

environment in time)(n? + nh), or timeO(n + h) if the maximum perimeter length of any vertex-
limited visibility polygon in £ is uniformly bounded as — oco. If k is the maximum number
of vertices of any vertex-limited visibility polygon in an environmehtrepresented with fixed
resolution, then the required memory size for an agent to run the distribeptaythent algorithm
is O(Nk) bits and message sized¥ k) bits. The deployment behaved in simulations as predicted
by the theory and can be extended to achieve robustness to agesit agent failure, packet loss,
removal of an environment edge (such as an opening door), or aepidyfrom multiple roots.

There are many interesting possibilities for future work in the area of deygayand nonconvex
coverage. Among the most prominent are: 3D environments, dynamic emérda with moving
obstacles, and optimizing different performance measures, e.g., bassghtinuous instead of
binary visibility, or with minimum redundancy requirements.

ACKNOWLEDGEMENT

This work has been supported in part by ONR Award N00014-07-21, NSF Award [1S-0904501, and
a DoD SMART fellowship. Thanks to Michael Schuresko (UCS@Y &ntonio Franchi (Uni Roma) for
helpful comments.

REFERENCES

=

. Lee DT, Lin AK. Computational complexity of art gallery ptelms. I[EEE Transactions on Information Theory

1986;32(2):276-282.

. Eidenbenz S, Stamm C, Widmayer P. Inapproximability resoltgéiarding polygons and terrainalgorithmica

2001;31(1):79-113.

. Efrat A, Har-Peled S. Guarding galleries and terrdimf@rmation Processing Lette006;100(6):238—245.

. Liaw BC, Huang NF, Lee RCT. The minimum cooperative guardsblem on k-spiral polygons.Canadian

Conference on Computational Geometyaterloo, Canada, 1993; 97-102.

. Urrutia J. Art gallery and illumination problemdandbook of Computational Geomet§ack JR, Urrutia J (eds.).

North-Holland, 2000; 973-1027.

O’Rourke JArt Gallery Theorems and Algorithm®xford University Press, 1987.

. Shermer TC. Recent results in art gallerfeceedings of the IEEE992;80(9):1384—-1399.

. Chhvatal V. A combinatorial theorem in plane geometlyurnal of Combinatorial Theory. Seriesl®75;18:39—-41.

. Fisk S. A short proof of Chatal’'s watchman theorendournal of Combinatorial Theory. SeriesiB78;24:374.

. Bjorling-Sachs |, Souvaine D. An efficient algorithm fguard placement in polygons with hold3iscrete and

Computational Geometr§©995;13(1):77-109.

11. Hoffmann F, Kaufmann M, Kriegel K. The art gallery theoreon polygons with holesIEEE Symposium on
Foundations of Computer Science (FOCSan Juan, Puerto Rico, 1991; 39-48.

12. Herraindez-Pialver G. Controlling guard€anadian Conference on Computational Geome®gskatoon, Canada,
1994; 387-392.

13. Pinciu V. A coloring algorithm for finding connected gdsiin art galleriesDiscrete Mathematical and Theoretical
Computer Sciengéd.ecture Notes in Computer Scieneel. 2731/2003, Springer, 2003; 257-264.

14. Gonalez-Bdios H, Latombe JC. A randomized art-gallery algorithm for sentmrementACM Symposium on
Computational Geometredford, MA, 2001; 232—-240.

15. Erdem UM, Sclaroff S. Automated camera layout to satisfy sqaecific and floor plan-specific coverage
requirementsComputer Vision and Image Understandi2@06;103(3):156—169.

16. Thrun S, Burgard W, Fox DProbabilistic RoboticsMIT Press, 2005.

17. Simmons R, Apfelbaum D, Fox D, Goldman R, Haigh K, Musliner 8jdadn M, Thrun S. Coordinated deployment
of multiple heterogenous roboti=EE/RSJ Int. Conf. on Intelligent Robots & Systeifekamatsu, Japan, 2000;
2254-2260.

18. Howard A, Matagé MJ, Sukhatme GS. An incremental self-deployment algorithm fobilacsensor networks.
Autonomous Robo002;13(2):113-126.

19. Suri S, Vicari E, Widmayer P. Simple robots with minimal sensifigom local visibility to global geometry.
International Journal of Robotics Resear2808;27(9):1055-1067.

20. Ganguli A, Corés J, Bullo F. Distributed deployment of asynchronous guardstigaderies.American Control
ConferenceMinneapolis, MN, 2006; 1416-1421.

21. Ganguli A, Cos J, Bullo F. Visibility-based multi-agent deployment in ortboal environmentsAmerican Control
ConferenceNew York, 2007; 3426-3431.

22. Ganguli A. Motion coordination for mobile robotic netwsrwith visibility sensors. PhD Thesis, Electrical and
Computer Engineering Department, University of Illinois abbma-Champaign Apr 2007.

23. Bullo F, Corés J, Marinez S.Distributed Control of Robotic Networké\pplied Mathematics Series, Princeton

University Press, 2009. Available at http://www.coordinabiook.info.

Bow~wo o prw N

28 K.J. OBERMEYER, A. GANGULI, F. BULLO

24. Cruz D, McClintock J, Perteet B, Orqueda OAA, Cao Y, Fi&rdecentralized cooperative control: A multivehicle
platform for research in networked embedded systéREE Control Systems Magazi2607;27(3):58—78.

25. Obermeyer K, Ganguli A, Bullo F. Multi-agent deployment ¥isibility coverage in polygonal environments with
holes Aug 2010. Available &tt t p: / / ar xi v. or g/ abs/ 1008. 4990.

26. Nilsson NJ. A mobile automaton: An application of artificiakifigence techniquesnt. Conference on Atrtificial
Intelligence 1969; 509-520.

27. Obermeyer KJ. The VisiLibity libraryat t p: / / www. Vi si Li bi ty. or g 2008. R-1.

28. Moore BJ, Passino KM. Distributed task assignment for mobile agiéfE Transactions on Automatic Control
2007;52(4):749-753.

29. Zavlanos MM, Spesivtsev L, Pappas GJ. A distributed auctgorithm for the assignment probletiEEE Conf. on
Decision and Contrgl2008; 1212-1217.

	Introduction
	Notation and Preliminaries
	Problem Description and Assumptions
	Network of Visually-Guided Agents
	Incremental Partition Algorithm
	A Sparse Vantage Point Set

	Distributed Deployment Algorithm
	Leader Behavior
	Proxy Behavior
	Explorer Behavior
	Performance Analysis
	Simulation Results
	Extensions

	Conclusion

