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SUMMARY

This article presents a distributed algorithm for a group ofrobotic agents with omnidirectional vision to
deploy into nonconvex polygonal environments with holes. Agents begin deployment from a common
point, possess no prior knowledge of the environment, and operate only under line-of-sight sensing and
communication. The objective of the deployment is for the agents to achieve full visibility coverage of the
environment while maintaining line-of-sight connectivity with each other. This is achieved by incrementally
partitioning the environment into distinct regions, each completely visible from some agent. Proofs are
given of (i) convergence, (ii) upper bounds on the time and number of agents required, and (iii) bounds on
the memory and communication complexity. Simulation results and description of robust extensions are also
included. Copyrightc© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Robots are increasingly being used for surveillance missions too dangerous for humans, or which
require duty cycles beyond human capacity. In this article we design a distributed algorithm for
deploying a group of mobile robotic agents with omnidirectional vision into nonconvex polygonal
environments with holes, e.g., an urban or building floor plan. Agents are identical except for their
unique identifiers (UIDs), begin deployment from a common point, possessno prior knowledge of
the environment, and operate only under line-of-sight sensing and communication. The objective
of the deployment is for the agents to achieve full visibility coverage of the environment while
maintaining line-of-sight connectivity (at any time the agents’ visibility graph consists of a single
connected component). We call this theDistributed Visibility-Based Deployment Problem with
Connectivity. Once deployed, the agents may supply surveillance information to an operator through
the ad-hoc line-of-sight communication network. A graphical description of our objective is given
in Fig. 1.

Approaches to visibility coverage problems can be divided into two categories: those where
the environment is known a priori and those where the environment must bediscovered. When
the environment is known a priori, a well-known approach is theArt Gallery Problemin which
one seeks the smallest set of guards such that every point in a polygon isvisible to some guard.
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Figure 1. This sequence (left to right, top to bottom) shows asimulation run of the distributed visibility-
based deployment algorithm described in Sec. 6. Agents (black disks) initially are colocated in the
lower left corner of the environment. As the agents spread out, they claim areas of responsibility
(green) which correspond to cells of the incremental partition tree TP . Blue lines show line-of-
sight connections between agents responsible for neighboring vertices of TP . Once agents have
settled to their final positions, every point in the environment is visibile to some agent and the
agents form a line-of-sight connected network. An animationof this simulation can be viewed at

http://motion.me.ucsb.edu/∼karl/movies/dwh.mov .

This problem has been shown both NP-hard [1] and APX-hard [2] in the number of verticesn
representing the environment. The best known approximation algorithms offer solutions only within
a factor ofO(log g), whereg is the optimum number of agents [3]. TheArt Gallery Problem with
Connectivityis the same as the Art Gallery Problem, but with the additional constraint that the
guards’ visibility graph must consist of a single connected component, i.e., the guards must form a
connected network by line of sight. This problem is also NP-hard inn [4]. Many other variations on
the Art Gallery Problem are well surveyed in [5, 6, 7]. The classicalArt Gallery Theorem, proven
first in [8] by induction and in [9] by a beautiful coloring argument, states that ⌊n

3 ⌋ vertex guards† are
always sufficient and sometimes necessary to cover a polygon withn vertices and no holes. TheArt
Gallery Theorem with Holes, later proven independently by [10] and [11], states that⌊n+h

3 ⌋ point
guards‡ are always sufficient and sometimes necessary to cover a polygon withn vertices andh
holes. If guard connectivity is required, [12] proved by induction and[13] by a coloring argument,
that ⌊n−2

2 ⌋ vertex guards are always sufficient and occasionally necessary forpolygons without
holes. We are not aware of any such bound for connected coverageof polygons with holes. For
polygonal environments with holes, centralized camera-placement algorithmsdescribed in [14] and
[15] take into account practical imaging limitations such as camera range and angle-of-incidence,
but at the expense of being able to obtain worst-case bounds as in the ArtGallery Theorems. The
constructive proofs of the Art Gallery Theorems rely on global knowledge of the environment and
thus are not amenable to emulation by distributed algorithms.

One approach to visibiliy coverage when the environment must be discovered is to first use SLAM
(Simultaneous Localization And Mapping) techniques [16] to explore and builda map of the entire

†A vertex guardis a guard which is located at a vertex of the polygonal environment.
‡A point guardis a guard which may be located anywhere in the interior or on the boundary of a polygonal environment.
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MULTI-AGENT DEPLOYMENT 3

environment, then use a centralized procedure to decide where to send agents. In [17], for example,
deployment locations are chosen by a human user after an initial map has beenbuilt. Waiting for
a complete map of the entire environment to be built before placing agents may not be desirable.
In [18] agents fuse sensor data to build only a map of the portion of the environment covered so
far, then heuristics are used to deploy agents onto the frontier of the this map, thus repeating this
procedure incrementally expands the covered region. For any techniques relying heavily on SLAM,
however, synchronization and data fusion can pose significant challenges under communication
bandwidth limitations. In [19] agents discover and achieve visibility coverageof an environment
not by building a geometric map, but instead by sharing only combinatorial information about the
environment, however, the strategy focuses on the theoretical limits of whatcan be achieved with
minimalistic sensing, thus the amount of robot motion required becomes impractical.

Most relevant to and the inspiration for the present work are the distributed visibility-based
deployment algorithms, for polygonal environments without holes, developed recently by Ganguli
et al [20, 21, 22]. These algorithms are simple, require only limited impact-based communication,
and offer worst-case optimal bounds on the number of agents required.The basic strategy is to
incrementally construct a so-callednagivation treethrough the environment. To each vertex in the
navigation tree corresponds a region of the the environment which is completely visible from that
vertex. As agents move through the environment, they eventually settle on certain nodes of the
navigation tree such that the entire environment is covered.

The contribution of this article is the first distributed deployment algorithm which solves, with
provable performance, the Distributed Visibility-Based Deployment Problem with Connectivity in
polygonal environments with holes. Our algorithm operates using line-of-sight communication and
a so-calledpartition tree data structure similar to thenavigation treeused by Ganguli et al as
described above. The algorithms of Ganguli et al fail in polygonal environments with holes because
branches of the navigation tree conflict when they wrap around one or more holes. Our algorithm,
however, is able to handle such “branch conflicts”. Given at least⌊n+2h−1

2 ⌋ agents in an environment
with n vertices andh holes, the deployment is guaranteed to achieve full visibility coverage of
the environment in timeO(n2 + nh), or time O(n + h) under certain technical conditions. We
also prove bounds on the memory and communication complexity. The deploymentbehaves in
simulations as predicted by the theory and can be extended to achieve robustness to agent arrival,
agent failure, packet loss, removal of an environment edge (such asan opening door), or deployment
from multiple roots.

This article is organized as follows. We begin with some technical definitions in Sec. 2, then
a precise statement of the problem and assumptions in Sec. 3. Details on the agents’ sensing,
dynamics, and communication are given in Sec. 4. Algorithm descriptions, including pseudocode
and simulation results, are presented in Sec. 5 and Sec. 6. We conclude in Section 7.

2. NOTATION AND PRELIMINARIES

We begin by introducing some basic notation. The real numbers are represented byR. Given a
set, sayA, the interior ofA is denoted byint(A), the boundary by∂A, and the cardinality by|A|.
Two setsA andB areopenly disjointif int(A) ∩ int(B) = ∅. Given two pointsa, b ∈ R

2, [a, b] is
the closed segmentbetweena and b. Similarly, ]a, b[ is the open segmentbetweena and b. The
number of robotic agents isN and each of these agents has a unique identifier (UID) taking a
value in{0, . . . , N − 1}. Agent positions areP = (p[0], . . . , p[N−1]), a tuple of points inR2. Just as
p[i] represents the position of agenti, we use such superscripted square brackets with any variable
associated with agenti, e.g., as in Table IV.

We turn our attention to the environment, visibility, and graph theoretic concepts. The
environmentE is polygonal with vertex setVE , edge setEE , total vertex countn = |VE | = |EE |,
and hole counth. Given any polygonc ⊂ E , the vertex set ofc is Vc and the edge set isEc. A
segment[a, b] is a diagonalof E if (i) a andb are vertices ofE , and (ii) ]a, b[⊂ int(E). Let e be
any point inE . The pointe is visible fromanother pointe′ ∈ E if [e, e′] ⊂ E . Thevisibility polygon
V(e) ⊂ E of e is the set of points inE visible frome (Fig. 2). Thevertex-limited visibility polygon
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4 K. J. OBERMEYER, A. GANGULI, F. BULLO

Ṽ(e) ⊂ V is the visibility polygonV(e) modified by deleting every vertex which does not coincide
with an environment vertex (Fig. 2). Agap edgeof V(e) (resp.Ṽ(e)) is defined as any line segment
[a, b] such that]a, b[⊂ int(E), [a, b] ⊂ ∂V(e) (resp.[a, b] ⊂ ∂Ṽ(e)), and it is maximal in the sense
thata, b ∈ ∂E . Note that a gap edge of̃V(e) is also a diagonal ofE . For short, we refer to the gap
edges ofV(e) as thevisibility gapsof e. A setR ⊂ E is star-convexif there exists a pointe ∈ R such

Figure 2. In a simple nonconvex polygonal environment are shown examples of the visibility polygon
(green, left) of a point observer (black disk), and the vertex-limited visibility polygon (green, right) of the

same point.

thatR ⊂ V(e). Thekernelof a star-convex setR, is the set{e ∈ E|R ⊂ V(e)}, i.e., all points inR
from which all ofR is visible. Thevisibility graphGvis,E(P ) of a set of pointsP in environmentE
is the undirected graph withP as the set of vertices and an edge between two vertices if and only if
they are (mutually) visible. Atreeis a connected graph with no simple cycles. Arooted treeis a tree
with a special vertex designated as theroot. Thedepthof a vertex in a rooted tree is the minimum
number of edges which must be treversed to reach the root from that vertex. Given a treeT , VT is
its set of vertices andET its set of edges.

3. PROBLEM DESCRIPTION AND ASSUMPTIONS

The Distributed Visibility-Based Deployment Problem with Connectivitywhich we solve in the
present work is formally stated as follows:

Design a distributed algorithm for a network of autonomous robotic agents to deploy
into an unmapped environment such that from their final positions every point in the
environment is visible from some agent. The agents begin deployment from acommon
point, their visibility graphGvis,E(P ) is to remain connected, and they are to operate
using only information from local sensing and line-of-sight communication.

By local sensing we intend that each agent is able to sense its visibility gaps and relative positions
of objects within line of sight. Additionally, we make the followingmain assumptions:

(i) The environmentE is static and consists of a simple polygonal outer boundary together with
disjoint simple polygonal holes. By simple we mean that each polygon has a single boundary
component, its boundary does not intersect itself, and the number of edges is finite.

(ii) Agents are identical except for their UIDs (0, . . . , N − 1).

(iii) Agents do not obstruct visibility or movement of other agents.

(iv) Agents are able to locally establish a common reference frame.

(v) There are no communication errors nor packet losses.

Later, in Sec. 6.6 we will describe how our nominal deployment algorithm can be extended to
relax some assumptions.
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MULTI-AGENT DEPLOYMENT 5

4. NETWORK OF VISUALLY-GUIDED AGENTS

In this section we lay down the sensing, dynamic, and communication model for theagents. Each
agent has “omnidirectional vision” meaning an agent possesses some device or combination of
devices which allows it to sense within line of sight (i) the relative position of another agent, (ii)
the relative position of a point on the boundary of the environment, and (iii) the gap edges of its
visibility polygon.

For simplicity, we model the agents as point masses with first order dynamics, i.e., agenti may
move throughE according to the continuous time control system

ṗ[i] = u[i], (1)

where the controlu[i] is bounded in magnitude byumax. The control action depends on time,
values of variables stored in local memory, and the information obtained fromcommunication and
sensing. Although we present our algorithms using these first order dynamics, the crucial property
for convergence is only that an agent is able to navigate along any (unobstructed) straight line
segment between two points in the environmentE , thus the deployment algorithm we describe is
valid also for higher order dynamics.

The agents’ communication graph is precisely their visibility graphGvis,E(P ), i.e., anyvisibility
neighbors(mutually visible agents) may communicate with each other. Agents may send their
messages using, e.g., UDP (User Datagram Protocol). Each agent (i = 0, . . . , N − 1) stores received
messages in a FIFO (First-In-First-Out) buffer InBuffer[i] until they can be processed. Messages
are sent only upon the occurrence of certain asynchronous events and the agents’ processors need
not be synchronized, thus the agents form anevent-driven asynchronous robotic networksimilar to
that described, e.g., in [23]. In order for two visibility neighbors to establish a common reference
frame, we assume agents are able to solve thecorrespondence problem: the ability to associate the
messages they receive with the corresponding robots they can see. Thismay be accomplished, e.g.,
by the robots performing localization, however, as mentioned in Sec. 1, this might use up limited
communication bandwidth and processing power. Simpler solutions include havingagents display
different colors, “license plates”, or periodic patterns from LEDs [24].

5. INCREMENTAL PARTITION ALGORITHM

We introduce a centralized algorithm to incrementally partition the environmentE into a finite set
of openly disjoint star-convex polygonal cells. Roughly, the algorithm operates by choosing at each
step a newvantage pointon the frontier of the uncovered region of the environment, then computing
a cell to be covered by that vantage point (each vantage point is in the kernel of its corresponding
cell). The frontier is pushed as more and more vantage point - cell pairs are added until eventually
the entire environment is covered. The vantage point - cell pairs form a directed rooted tree structure
called thepartition treeTP . This algorithm is a variation and extension of an incremental partition
algorithm used in [22], the main differences being that we have added a protocol for handling
holes and adapted the notation to better fit the added complexity of handling holes. The deployment
algorithm to be described in Sec. 6 is a distributed emulation of the centralized incremental partition
algorithm we present here.

Before examining the precise pseudocode Table I, we informally step through the incremental
partition algorithm for the simple example of Fig. 3a-f. This sequence shows theenvironment
partition together with corresponding abstract representations of the partition treeTP . Each vertex
of TP is a vantage point - cell pair and edges are based on cell adjacency. Given any vertex ofTP ,
say(pξ, cξ), ξ is thePTVUID (Partition Tree Vertex Unique IDentifier). The PTVUID of a vertex
at depthd is a d-tuple, e.g., (1), (2,1), or (1,1,1). The symbol∅ is used as the root’s PTVUID.
The algorithm begins with the root vantage pointp∅. The cell ofp∅ is the grey shaded regionc∅ in
Fig. 3a, which is the vertex-limited visibility polygoñV(p∅). According to certain technical criteria,
made precise later, child vantage points are chosen on the endpoints of the unexplored gap edges.
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6 K. J. OBERMEYER, A. GANGULI, F. BULLO

Table I. Centralized Incremental Partition Algorithm

INCREMENTAL PARTITION(E , p∅)

1: {Compute and Insert Root Vertex intoTP}
2: c∅ ← Ṽ(p∅);
3: for each gap edgeg of c∅ do
4: labelg asunexplored in c∅;
5: insert(p∅, c∅) into TP ;
6: {Main Loop}
7: while any cell inTP hasunexplored gap edgesdo
8: cζ ← any cell inTP with unexplored gap edges;
9: g ← anyunexplored gap edge ofcζ ;

10: (pξ, cξ)← CHILD(E , TP , ζ, g); {See Tab. II}
11: {Check for Branch Conflicts}
12: if there exists any cellcξ′ in TP which is inbranch conflictwith cξ then
13: discard(pξ, cξ);
14: labelg asphantom wall in cζ ;
15: else
16: insert(pξ, cξ) into TP ;
17: labelg aschild in cζ ;
18: return TP ;

In Fig. 3a, dashed lines show the unexplored gap edges ofc∅. Selectingp(1) as the next vantage
point, the corresponding cellc(1) becomes the portion of̃V(p(1)) which is across the parent gap
edge and extends away from the parent’s cell. The vantage pointp(2) and its cellc(2) are generated
in the same way. There are now three vertices,(p∅, c∅), (p(1), c(1)), and(p(2), c(2)) in TP (Fig. 3b).
In a similar manner, two more vertices,(p(2,1), c(2,1)) and (p(2,1,1), c(2,1,1)), have been added in
Fig. 3c. An intersection of positive area is found between cellc(2,1,1) and the cell of another branch
of TP , namelyc(1). To solve thisbranch conflict, the cellc(2,1,1) is discarded and a special marker
called aphantom wall(thick dashed line in Fig. 3d) is placed where its parent gap edge was. A
phantom wall serves to indicate that no branch ofTP should cross a particular gap edge. The vertex
(p(1,2), c(1,2)) added in Fig. 3e thus can have no children. Finally, Fig. 3f shows the remaining
vertices(p(1,1), c(1,1)) and(p(1,1,1), c(1,1,1)) added toTP so that the entire environment is covered
and the algorithm terminates.

Now we turn our attention to the pseudocode Table I for a precise description of the algorithm.
The input is the environmentE and a single pointp∅ ∈ VE . The output is the partition treeTP . We
have seen that each vertex of the partition tree is a vantage point - cell pair. In particular, a cell is a
data structure which stores not only a polygonal boundary, but also a label on each of the polygon’s
gap edges. A gap edge label takes one of four possible values:parent, child, unexplored,
or phantom wall. These labels allow the following exact definition of the partition tree.

Definition 5.1(Partition TreeTP )
The directed rooted partition treeTP has

(i) vertex set consisting of vantage point - cell pairs produced by the incremental partition
algorithm of Table I, and

(ii) a directed edge from vertex(pζ , cζ) to vertex(pξ, cξ) if and only if cζ has achild gap edge
which coincides with aparent gap edge ofcξ.

Stepping through the pseudocode Table I, lines 1-5 compute and insert the root vertex(p∅, c∅) into
TP . Upon entering the main loop at line 7, line 8 selects a cellcζ arbitrarily from the set of cells
in TP which haveunexplored gap edges. Line 9 selects an arbitraryunexplored gap edgeg
of cζ . The next vantage point candidate will be placed on an endpoint ofg by a call on line 10 to
the CHILD function of Table II. The PTVUIDξ is computed by the successor function on line 1 of
Table II. For anyd-tupleζ and positive integeri, successor(ζ, i) is simply the(d + 1)-tuple which is
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Figure 3. This simple example shows how the incremental partition algorithm of Table I progresses (a)-(f).
Cell vantage points are shown by black disks. The portion of the environmentE covered at each stage is
shown in grey (left) along with a corresponding abstract depiction of the partition tree (right). A phantom
wall (thick dashed line), shown first in (d), comes about whenthere is abranch conflict, i.e., when cells
from different branches of the partition treeTP are not openly disjoint. The final partition can be used to

triangulate the environment as shown in Fig. 4.

the concatenation ofζ andi, e.g.,successor((2, 1), 1)) = (2, 1, 1). The CHILD function constructs
a candidate vantage pointpξ and cellcξ as follows. In the typical case, when the parent cellcζ has
more than three edges,cζ ’s vertices are enumerated counterclockwise frompζ , e.g., asc∅’s vertices
in Fig. 3a or Fig. 6. In the special case ofcζ being a triangle, e.g., as the triangular cells in Fig. 6,cζ ’s
vertices are enumerated such that the3 lands oncζ ’s parent gap edge. The vertex ofg which is odd
in the enumeration is selected aspξ. Occasionally there may bedouble vantage points(colocated),
e.g., asp(2) andp(3) in Fig. 6. We will see in Sec. 5.1 that thisparity-based vantage point selection
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Figure 3. (continuation)

schemeis important for obtaining a special subset of the vantage points called thesparse vantage
point set. Returning to Table I, the final portion of the main loop, lines 11-17, checks whethercξ

is in branch conflictor (pξ, cξ) should be added permanently toTP . A cell cξ is in branch conflict
with another cellcξ′ if and only if cξ andcξ′ are not openly disjoint (see Fig. 5). The main algorithm
terminates when there are no more unexplored gap edges inTP .

An important difference between our incremental partition algorithm and thatof Ganguli et al
[22] is that the set of cells computed by our incremental partition is not unique. This is because
the freedom in choosing cellcζ and gapg on lines 8-9 of Table I allows different executions of the
algorithm to fill the same part of the environment with different branches ofTP . This may result
in different sets of phantom walls as well. A phantom wall is only created on line 14 of Table I
when there is a branch conflict. This discarding may seem computationally wasteful because the
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Table II. Incremental Partition Subroutine

CHILD(E , TP , ζ, g)

1: ξ ← successor(ζ, i), whereg is the ith nonparent gap edge ofcζ counterclockwise from
pζ ;

2: if |Vcξ | > 3 then
3: enumeratecζ ’s vertices1, 2, 3, . . . counterclockwise frompζ ;
4: else
5: enumeratecζ ’s vertices so thatpζ is assigned1 and the remaining vertices ofcζ are

assigned2 and3
such that the vertex assigned3 is on theparent gap edge ofcζ ;

6: pξ ← vertex ong assigned an odd integer in the enumeration;
7: cξ ← Ṽ(pξ);
8: truncatecξ atg such that only the portion remains which is acrossg from pζ ;
9: delete fromcξ any vertices which lie across a phantom wall frompξ;

10: for each gap edgeg′ of cξ do
11: if g′ == g then
12: labelg′ asparent in cξ;
13: else if g′ coincides with an existing phantom wallthen
14: labelg′ asphantom wall in cξ;
15: else
16: labelg′ asunexplored in cξ;
17: return (pξ, cξ);

Figure 4. The partition tree produced by the centralized incremental partition algorithm of Table I or the
distributed deployment algorithm of Table VI can be used to triangulate an environment, as shown here for
the simple example of Fig. 3. The triangulation is constructed by drawing diagonals (dashed lines) from

each vantage point (black disks) to the visible environmentvertices in its cell.

environment could just be made simply connected by choosingh phantom walls (one for each hole)
prior to executing the algorithm. Such an approach, however, would not be amenable to distributed
emulation without a priori knowledge of the environment.

The following important properties we prove for the incremental partition algorithm are similar
to properties we obtain for the distributed deployment algorithm in Sec. 6.

Lemma 5.2(Star-Convexity of Partition Cells)
Any partition tree vertex(pξ, cξ) constructed by the incremental partition algorithm of Table I, has
the properties that
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cξ

cξ′pξ′

pξ

(a)

pξ

pξ′

cξ

cξ′

(b)

pξ

cξ pξ′

cξ′

(c)

Figure 5. The incremental partition algorithm of Table I anddistributed deployment algorithm of Table VI
may discard a cellcξ if it is in branch conflictwith another cellcξ′ already in the partition tree, i.e., whencξ

andcξ′ and are not openly disjoint. In these three examples, blue represents one cellcξ, red another cellcξ′ ,
and purple their intersectioncξ ∩ cξ′ . A cell can even conflict with it’s own parent if they enclose ahole as

in (c).

(i) the cellcξ is star-convex, and
(ii) the vantage pointpξ is in the kernel ofcξ.

Proof
Given a star-convex set, sayS, let K be the kernel ofS. Suppose that we obtain a new setS′ by
truncatingS at a single line segmentl who’s endpoints lie on the boundary∂S. It is easy so see
that the kernel ofS′ containsK ∩ S′, thusS′ must be star-convex ifK ∩ S′ is nonempty. Indeed
l could not possibly block line of sight from any point inK ∩ S′ to any pointp in S′, otherwise
p would have been truncated. Inductively, we can obtain a setS′ by truncating the setS at any
finite number of line segments and the kernel ofS′ will be a superset ofS′ ∩ K. Now consider a
partition tree vertex(pξ, cξ). By definition, the visibility polygonV(pξ) is star-convex andpξ is in
the kernel. By the above reasoning, the vertex-limited visibility polygonṼ(pξ) is also star-convex
and haspξ in its kernel becausẽV(pξ) can be obtained fromV(pξ) by a finite number of line segment
truncations (lines 8 and 9 of Table II). Likewise,cξ must be star-convex withpξ in its kernel because
cξ is obtained from̃V(pξ) by a finite number of line segment truncations at the parent gap edge and
phantom walls.

Theorem 5.3(Properties of the Incremental Partition Algorithm)
Suppose the incremental partition algorithm of Table I is executed on an environmentE with n
vertices andh holes. Then
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p(2,1)
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Figure 6. The example used in Fig. 3 showed a typical incremental partition in which there were neither
double vantage points nor any triangular cells. This example, on the other hand, shows these special cases.
Disks, black or white, show vantage points produced by the incremental partition algorithm of Table I.
Integers show enumerations of the cells used for theparity-based vantage point selection scheme. The
double vantage pointsp(2) andp(3) are colocated. The cellsc(2), c(3), c(2,1), c(3.1), c(2,1,1), andc(3,1,1)

are triangular. The vantage points colored black are thesparse vantage pointsfound by the postprocessing
algorithm of Table III. Under the distributed deployment algorithm of Table VI, robotic agents position

themselves at sparse vantage points.

(i) the algorithm returns in finite time a partition treeTP such that every point in the environment
is visible to some vantage point,

(ii) the visibility graph of the vantage pointsGvis,E({pξ|(pξ, cξ) ∈ TP}) consists of a single
connected component,

(iii) the final number of vertices inTP (and thus the total number of vantage points) is no greater
thann + 2h − 2,

(iv) there exist environments where the final number of vertices inTP is equal to the upper bound
n + 2h − 2, and

(v) the final number of phantom walls is preciselyh.

Proof
We prove the statements in order. The algorithm processesunexplored gap edges one by one
and terminates when there are no moreunexplored gap edges. Once anunexplored gap edge
has been processed, it is never processed again because its label changes tophantom wall or
child. Gap edges of cells are diagonals of the environment and there are no more than

(

n
2

)

= n2−n
2

possible diagonals, which is finite, therefore the algorithm must terminate in finite time.Lemma 5.2
guarantees that if the entire environment is covered by cells ofTP , then every point is visible to some
vantage point. Suppose the final set of cells does not cover the entire environment. Then there must
be a portion of the environment which is topologically isolated from the rest ofthe environment
by phantom walls, otherwise anunexplored gap edge would have expanded into that region.
However, this would mean that a phantom wall was created at theparent gap edge of a candidate
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p(1,1,1)

p∅

p(1)

p(1,1)

(a)

p(1)

p∅

p(1,1)

(b)

Figure 7. (a) An example of when the final number of vantage points in TP is equal to the upper bound
n + 2h− 2 given in Theorem 5.3. (b) An example of when the number of points in R

2 where at least one

sparse vantage point is located is equal to the upper bound
j

n+2h−1
2

k

given in Theorems 5.5 and 6.4.

cell which was not in branch conflict. This is not possible because a phantom wall is only ever
created if there is a branch conflict (lines 12-14 Table I). This completes theproof of statement (i).

Statement (ii) follows from Lemma 5.2 together with the fact that every vantage point is placed
on the boundary of its parent’s cell. Given two vantage points inTP , say pξ and pξ′ , a path
throughGvis,E({pξ|(pξ, cξ) ∈ TP}) from pξ to pξ′ can be constructed as follows. Follow parent-
child visibility links up to the root vantage pointp∅, then follow parent-child visibility links from
p∅ down topξ′ . Since such a path can always be constructed between any pair of vantage points,
Gvis,E({pξ|(pξ, cξ) ∈ TP}) must consist of a single connected component.

For statement (iii), we triangulateE by triangulating the cells ofTP individually as in Fig. 4.
Each cellcξ is triangulated by drawing diagonals frompξ to the vertices ofcξ. The total number of
triangles in any triangulation of a polygonal environment with holes isn + 2h − 2 (Lemma 5.2 in
[6]). Since there is at least one triangle per cell and at most one vantage point per cell, the number
of vantage points cannot exceed the maximum number of trianglesn + 2h − 2.

Statement (iv) is proven by the example in Fig. 7a.
For statement (v), we argue topologically. Suppose the final number of phantom walls were less

thanh. Then somewhere two branches of the parition tree must share a gap edgewith no phantom
wall separating them. If this shared gap edge is not a phantom wall, it must beeither (1) a child in
branch conflict, or (2) unexplored. Either way, the algorithm would have tried to create a cell there
but then deleted it and created a phantom wall; a contradiction. Now suppose there were more than
h phantom walls. Then a cell would be topologically isolated by phantom walls from the rest of the
environment. This is not possible because phantom walls can never be created at the parent-child
gap edge between two cells. Since the final number of phantom walls can be neither less nor greater
thanh, it must beh.

5.1. A Sparse Vantage Point Set

Suppose we were to deploy robotic agents onto the vantage points produced by the incremental
partition algorithm (one agent per vantage point). Then, as Theorem 5.3 guarantees, we would
achieve our goal of complete visibility coverage with connectivity. The number of agents required
would be no greater than the number of vantage points, namelyn + 2h − 2. This upper bound,
however, can be greatly improved upon. In order to reduce the number of vantage points agents
must deploy to, the postprocessing algorithm in Table III takes the partition tree output by the
incremental partition algorithm and labels a subset of the vantage points calledthesparse vantage
point set. Starting at the leaves of the partition tree and working towards the root, vantage points are
labeled eithernonsparse or sparse according to criterion on line 2 of Table III. As proven in
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Table III. Postprocessing of Partition Tree

LABEL VANTAGE POINTS(E , TP )

1: while there exists a vantage pointpξ in TP such thatpξ has not yet been labeled
and

`

pξ is at a leafor all child vantage points ofpξ have been labeled
´

do
2: if |Vcξ | == 3 and pξ has exactly one child vantage point labeledsparse then
3: labelpξ asnonsparse;
4: else
5: labelpξ assparse;

Theorem 5.5 below, the sparse vantage points are suitable for the coverage task and their cardinality
has a much better upper bound than the full set of vantage points. All the vantage points in the
example of Fig. 3 are sparse. Fig. 6 shows an example of when only a propersubset of the vantage
points is sparse.

Lemma 5.4(Properties of a Child Vantage Point of a Triangular Cell)
Let (pξ, cξ) be a partition tree vertex constructed by the incremental partition algorithm of Table I
and supposecξ has a parent cellcζ which is a triangle. Thenpξ is in the kernel ofpζ . Furthermore,
if pζ has a parent vantage pointpζ′ (the grandparent ofpξ), thenpξ is visible topζ′ .

Proof
The kernel of a triangular (and thus convex) cellcζ is all of cζ . By Lemma 5.2,pζ′ is in the kernel of
cζ′ . According to the parity-based vantage point selection scheme (line 5 of Table II), pξ is located
at a point common tocζ′ , cζ , andcξ, thereforepξ is in the kernel ofcζ and visible tocζ′ .

Theorem 5.5(Properties of the Sparse Vantage Point Set)
Suppose the incremental partition algorithm of Table I is executed to completion onan environment
E with n vertices andh holes and the vantage points of the resulting partition tree are labeled by the
algorithm in Table III. Then

(i) every point in the environment is visible to some sparse vantage point,
(ii) the visibility graph of the sparse vantage pointsGvis,E({pξ|(pξ, cξ) ∈ TP}) consists of a single

connected component,
(iii) the number of points inR2 where at least one sparse vantage point is located is no greater than

⌊

n+2h−1
2

⌋

, and
(iv) there exist environments where the upper bound

⌊

n+2h−1
2

⌋

in (iii) is met.

Proof

Statements (i) and (ii) follow directly from Lemma 5.4 together with statements (i) and (ii)of
Theorem 5.3.

For statement (iii) we use a triangulation argument similar to that used in [22] forenvironments
without holes. We use the same triangulation as in the proof of Theorem 5.3 (Fig. 4). The total
number of triangles in any triangulation of a polygonal environment with holesis n + 2h − 2
(Lemma 5.2 in [6]). Suppose we can assign at least one unique triangle top∅ wheneverp∅ is sparse
and at least two unique triangles to all other sparse vantage point locations. Let Nsparse be the
number of sparse vantage point locations. Setting2(Nsparse − 1) + 1 = 2Nsparse − 1 to be less or
equal to the total number of trianglesn + 2h − 2 and solving forNsparse gives the desired bound

Nsparse ≤

⌊

(n + 2h − 2) + 1

2

⌋

=

⌊

n + 2h − 1

2

⌋

.

Indeed we can make such an assignment of triangles to sparse vantage point locations. Our argument
relies on the parity-based vantage point selection scheme and the criterion for labeling a vantage
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Agent Mode

explore lead

proxy

(a)

proxytour

cξ′

pξ

cξ

pξ′

(b)

Figure 8. (a) In the distributed deployment algorithm of Table VI, each agent may switch betweenlead,
proxy, andexplore mode based on certain asynchronous events. Leader agents are responsible for
maintaining a distributed representation of the partitiontreeTP , proxies help establish communication for
solving branch conflicts, and explorers systematically navigate throughTP in search of opportunities to
become a leader or proxy. The agent mode color code is used also in Fig. 10 and 12. (b) Even if a pair
of leader agents (black) are not mutually visible, their cells (cξ andcξ′ ) may intersect as in Fig. 5, shown
here abstractly by a Venn diagram. Sending a proxy agent (yellow), on aproxy touraround one of the cell
boundaries guarantees it will enter the cells’ intersectionso that communication between leaders can be
proxied. The leaders can then establish a local common reference frame and compare cell boundaries in

order to solve branch conflicts.

point assparse on line 2 of Table III. To any sparse vantage point location, say ofpξ other than
the root, we assign one triangle in the parent cell. The triangle in the parent cell is the triangle
formed by its parent gap edge together with its parent’s vantage point. To each sparse vantage
point location, say ofpξ, including the root, we assign additionally one triangle in the cellcξ. If cξ

has no children, then any triangle incξ can be assigned topξ. If cξ has children (in which case it
must have greater than one triangle) we need to check that it has more triangles than child vantage
point locations with odd parity. Supposecξ has an even number of edges. Then this number of
edges can be written2m wherem ≥ 2. The number of triangles incξ is 2m − 2 and the number
of odd parity vertices incξ where child vantage points could be placed ism − 1. This means at
mostm − 1 triangles incξ are assigned to odd parity child vantage point locations, which leaves
(2m − 2) − (m − 1) = m − 1 ≥ 1 triangles to be assigned to the location ofpξ. The case ofcξ

having an odd number of edges is proven analogously.
Statement (iv) is proven by the example in Fig. 7.

6. DISTRIBUTED DEPLOYMENT ALGORITHM

In this section we describe how a group of mobile robotic agents can distributedly emulate the
incremental partition and vantage point labeling algorithms of Sec. 5, thus solving the Distributed
Visibility-Based Deployment Problem with Connectivity. We first give a rough overview of the
algorithm, called DISTRIBUTEDDEPLOYMENT(), and later explain in more detail with aid of
the pseudocode in Table VI. Each agenti has a local variable mode[i], among others, which takes
a valuelead, proxy, orexplore. For short, we call an agent inlead mode aleader, an agent
in proxy mode aproxy, and an agent inexplore mode anexplorer. Agents may switch between
modes (see Fig. 8a) based on certain asynchronous events. Leaders settle at sparse vantage points
and are responsible for maintaining in their memory a distributed representationof the partition tree
TP consistent with Definition 5.1. By distributed representation we mean that each leaderi retains
in its memory up to twovertices of responsibility, (p

[i]
1 , c

[i]
1 ) and(p

[i]
2 , c

[i]
2 ), and it knows which gap
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Cell Status

deleted

retracting

contending

permanent

(a)

(b) (c) (d)

Figure 9. (a) In the distributed deployment algorithm of Table VI, any cell in a leader’s memory has a
status which takes the valueretracting, contending, orpermanent. (b) Each cell status is initially
retracting. The status of a retracting cell is advanced tocontending after the execution of a proxy
tour in which the cell is truncated as necessary to ensure no branch conflict with any permanent cells. (c)
In a second proxy tour, a contending cell is deleted if it is found to be in branch conflict with another
contending cell of smaller PTVUID (according to total ordering Def. 6.2), otherwise its status is advanced
to permanent. (d) Only when a cell has attained statuspermanent can any child cells be added at its

unexplored gap edges (continued in Fig. 10). The cell statuscolor code is used in Fig. 10 as well as 12.

(a) (b) (c)

(d) (e) (f)

Figure 10. Color codes correspond to those in Fig. 8 and 9. (a,b) Once a cell has statuspermanent,
arriving explorer agents can be sent to become leaders at child gap edges. (c-f) Any remaining explorer
agents continue systematically navigating the partition tree in search of a leader or proxy tasks they could

perform.
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Figure 11. In the distributed deployment algorithm of TableVI, explorer agents search the partition tree
TP depth-first for leader or proxy tasks they could perform. An agent in a cell, saycξ, can always order
the gap edges ofcξ, e.g., counterclockwise from the parent gap edge. The depth-first search progresses by
the explorer agent always moving to the next unvisited childor unexplored gap edge in that ordering. The
agent thus moves from cell to cell deeper and deeper until a leaf (a vertex with no children) is found. Once
at a leaf, the agent backtracks to the most recent vertex withunvisited child or unexplored gap edges and
the process continues. As an example, (left) integers (not to be confused with PTVUIDs) show the depth-
first order an agent would visit the vertices ofTP in Fig. 3f if the gap edges in each cell were ordered
couterclockwise from the parent gap edge. If the agent instead uses a gap edge ordering cyclically shifted
by one, then (right) shows the different resulting depth-first order. If each agent uses a different gap edge
ordering, e.g., cyclically shifted by their UID, then different branches ofTP are explored in parallel and the

deployment tends to cover the environment more quickly. Cf.Fig. 10.

edges of those vertices lead to the parent and child vertices inTP .§ We call (p[i]
1 , c

[i]
1 ) theprimary

vertexof agenti and(p
[i]
2 , c

[i]
2 ) the secondary vertex. A leader typically has only a primary vertex

in its memory and may have also a secondary only if it is either positioned (1) at adouble vantage
point, or (2) at a sparse vantage point adjacent to a nonsparse vantage point. Each cell in a leader’s
memory has a status which takes the valueretracting, contending, or permanent (see
Fig. 9). Only when a cell has attained statuspermanent can any childTP vertices be added at its
unexplored gap edges.

Remark 6.1(3 Cell Statuses)
In our system of three cell statuses, a cell must go through two steps before attaining status
permanent. Intuitively, the need for two steps arises from the fact that an agent must first
determine the boundary of its cell before it can even know what other cellsare in branch conflict or
place children according to the parity-based vantage point selection scheme. Hence, the first proxy
tour allows truncation of the cell boundary at all permanent cells. Only after that, when the boundary
is known, is the second proxy tour run and the cell deconflicted with other contending cells. Note
that even in the centralized incremental partition algorithm two steps had to be taken by a newly
constructed cell: the cell had to be (1) truncated at existing phantom walls, and then (2) deleted if it
was in branch conflict.¶

The job of a proxy agent is to assist leaders in advancing the status of theircells towards
permanent by proxying communication with other leaders (see Fig 8b). Any agent which isnot
a leader or proxy is an explorer. Explorers merely move in depth-first order systematically about
TP in search of opportunity to serve as a proxy or leader (see Fig. 10 and 11). To simplify the
presentation, let us assume for now that, as in the examples Fig. 3 and Fig. 12, no double vantage
points or triangular cells occur. Under this assumption, each leader will be responsible for only one
TP vertex, its primary vertex, and all vantage points will be sparse. The deployment begins with all
agents colocated at the first vantage pointp∅. One agent, say agent0, is initialized tolead mode
with the first cellc[0]

ξ1
= c∅ = Ṽ(p∅) in its memory. All other agents are initialized toexplore

mode. Agent0 can immediately advance the status ofc∅ topermanent because it cannot possibly

§The subscripts of a leader agent’svertices of responsibilityare not to be confused with PTVUIDs, i.e.,(p
[i]
1 , c

[i]
1 ) and

(p
[i]
2 , c

[i]
2 ) are not in general the same as(p(1), c(1)) and(p(2), c(2)).

¶We did attempt to simplify the distributed deployment alogrithm and make the cells only go through a single step, i.e.,
a single proxy tour to become permanent, however, there seem to beother difficulties with such an approach, particularly
with time complexity bounds.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 12. With color codes from Fig. 8 and 9, here is a simple example of agents executing the distributed
deployment algorithm of Table VI. (a) Agents enter the environment and the leader initializes the root cell
to statuspermanent because no branch conflicts could possibly exist yet. Explorer agents move out to
become leaders of child cells. (b) The lower child cell is initialized with statuspermanent because it has
no gap edges and thus cannot be in branch conflict. The upper two child cells are initialized toretracting
because they could be in branch conflict at unexplored gap edges; indeed there is a branch conflict at the
dark red overlap region. The remaining explorer agents continue moving out to the new cells. (c) Once
the explorers reach the retracting cells, they become proxies and run tours around the cells to check for
branch conflict with permanent cells. (d) After the first proxy tours, the child cells’ statuses are advanced to
contending and each proxy run a second tour. (e) During the second proxy tours, the branch conflict is
detected between contending cells and the cell with higher PTVUID is deleted. The agents that were in the
deleted cell move back up the partition tree and continue exploring depth-first. The other proxy becomes a
leader of a new child cell initialized toretracting. (f) One of the explorers arrives at the retracting cell
and begins a proxy tour to advance the cell tocontending. (g) The proxy runs a second tour and advances
the cell topermanent and the partition is completed. (h) Remaining explorers continue navigating the
partition tree depth-first in search of tasks; this adds robustness because they will be able to fill in anywhere

an agent may fail or a door may open.

be in branch conflict (no other cells even exist yet); in general, however, cells can only transition
between statuses when a proxy tour is executed. Agent0 sees all the explorers in its cell and assigns
as many as necessary to become leaders so that there will be one new leaderpositioned on each
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unexplored gap edge ofc∅. The new leader agents move concurrently to their new respective vantage
points while all remaining explorer agents move towards the next cell in their depth-first ordering.
When a leader first arrives at its vantage point, saypξ, of the cellcξ, it initializes cξ to have status
retracting and boundary equal to the portion ofṼ(pξ) which is across the parent gap edge
and extends away from the parent’s cell. When an explorer agent comesto such a newly created
retracting cell, the leader assigns that explorer to become a proxy and follow a proxy tour which
traverses all the gap edges ofcξ. During the proxy tour, the proxy agent is able to communicate
with any leader of a permanent cell that might be in branch conflict with thecξ. The cellcξ is thus
truncated as necessary to ensure it is not in branch conflict with anypermanent cell. When this
first proxy tour is complete, the status ofcξ is advanced tocontending. The leader ofcξ then
assigns a second proxy tour which again traverses all the gap edges ofcξ. During this second proxy
tour, the leader communicates, via proxy, with all leaders of contending cellswhich come into line
of sight of the proxy. If a branch conflict is detected betweencξ and another contending cell, the
agents have ashoot-out: they compare PTVUIDs of the cells and agree to delete the one which is
larger according to the following total ordering.

Definition 6.2(PTVUID Total Ordering)
Let ξ1 andξ2 be distinct PTVUIDs. Ifξ1 andξ2 do not have equal depth, thenξ1 < ξ2 if and only
if the depth ofξ1 is less than the depth ofξ2. If ξ1 andξ2 do have equal depth, thenξ1 < ξ2 if and
only if ξ1 is lexicographically smaller thanξ2.‖

When a cellcξ with parentcζ is deleted, two things happen: (1) The leader ofcζ marks a phantom
wall at its child gap edge leading tocξ, and (2) all agents that were incξ become explorers, move
back intocζ , and resume depth-first searching for new tasks as in Fig. 12e. If the second proxy tour
of a cellcξ is completed withoutcξ being deleted, then the status ofcξ is advanced topermanent
and its leader may then assign explorers to become leaders of childTP vertices atcξ ’s unexplored
gap edges. Agents in different branches ofTP create new cells in parallel and run proxy tours in an
effort to advance those cells to statuspermanent. NewTP vertices can in turn be created at the
unexplored gap edges of the new permanent cells and the process continues until, provided there are
enough agents, the entire environment is covered and the deployment is complete.

We now turn our attention to pseudocode Table VI to describe DIS-
TRIBUTED DEPLOYMENT() more precisely. For brevity, this pseudocode is written at a
fairly high level. The interested reader may view more implementation details in our technical
report available electronically [25]. The algorithm consists of three threads which run concurrently
in each agent: communication (lines 1-6), navigation (lines 7-13), and internal state transition (lines
14-21). An outline of the local variables used for these threads is shownin Tables IV and V. The
communication thread tracks the internal states of all an agent’s visibility neighbors. One could
design a custom communication protocol for the deployment which would make more efficient use
of communication bandwidth, however, we find it simplifies the presentation to assume agents have
direct access to their visibility neighbors’ internal states via the data structure NeighborData[i].
The navigation thread has the agent follow, at maximum velocityumax, a queue of waypoints
called Route[i] as long as the internal state componentc

[i]
ξproxied

.Wait Set is empty (it is only ever
nonempty for a proxy agent and its meaning is discussed further in Section 6.2). The waypoints can
be represented in a local coordinate system established by the agent every time it enters a new cell,
e.g., a polar coordinate system with origin at the cell’s vantage point. In the internal state transition
thread, an agent switches betweenlead, proxy, and explore modes. The agent reacts to
different asynchronous events depending on what mode it is in. We treat the details of the different
mode behaviors in the following Sections 6.1, 6.2, and 6.3.

‖ For example,(1) < (2) and(1, 3) < (3, 2), but(3, 2) < (1, 3, 1).
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Table IV. Agent Local Variables for Distributed Deployment

Use Name Brief Description

Communication

UID[i] := i agent Unique IDentifier

In Buffer[i] FIFO queue of messages received from
other agents

NeighborData[i] data structure which tracks relevant state
information of visibility neighbors

statechangeinterrupt[i] boolean,true if and only if internal state
has changed between the last and current
iteration of the communication thread

new visible agentinterrupt[i] boolean, true if and only if a new
agent became visible between the last and
current iteration of the communication
thread

Navigation
Route[i] FIFO queue of waypoints

p[i], ṗ[i], u position, velocity, and velocity input

Internal State

mode[i] agent mode takes a valuelead, proxy,
or explore

VantagePoints[i] := (p
[i]
ξ1

, p
[i]
ξ2

) vantage points used inlead mode for
distributed representation ofTP ; may
have size 0, 1, or 2; eachpξ may be
labeled eithersparse or nonsparse

Cells[i] := (c
[i]
ξ1

, c
[i]
ξ2

) cells used inlead mode for distributed
representation ofTP ; may have size 0, 1,
or 2; cell fields shown in Tab. V

c
[i]
ξproxied

used inproxymode as local copy of cell
being proxied

ξ
[i]
current, ξ

[i]
last PTVUIDs of current and lastTP vertices

visited in depth-first search; used in
explore mode to navigateTP

6.1. Leader Behavior

The LEAD() subroutine of the internal state transition thread, called on line 17 of Table VI, is
shown in Table VII with the behavior grouped into four sections: attempt cellconstruction (lines
1-6), assign tasks (lines 7-11), react to deconfliction events (lines 12-20), and propagate sparse
vantage point information (lines 21-30). A leader attempts to construct a cell,saycξ, whenever it
first arrives atpξ. In order to guarantee an upper bound on the number of agents required by the
deployment (Theorem 6.4), the leader must enforce that any cell it addsto TP contains at least
one unique triangle which is not in any other cell of the distributedTP representation. This can be
accomplished by the leader first looking at its NeighborData to see if the parent gap edge, call itg,
is contained in the cell of any neighbor other than the parent. If not, then theexistence of a unique
triangle is guaranteed because cell vertices always coincide with environment vertices. In that case
the agent safely initializes the cell toretracting status and waits for a proxy agent to help it
advance the cell’s status towardspermanent. If, however,g is contained in a neighbor cell other
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Table V. Cell Data Fields for Distributed Deployment

Name Brief Description

ξ PTVUID (Partition Tree Vertex Unique IDentifier)

cξ.Boundary polygonal boundary with each gap edge labeled either as
parent, child, unexplored, or phantom wall; child
gap edges may be additionally labeled with an agent UID if
that agent has been assigned as leader of that gap edge

cξ.status cell status may take a valueretracting, contending, or
permanent

cξ.proxy uid UID of agent assigned to proxycξ; takes value∅ if no proxy
has been assigned

cξ.Wait Set set of PTVUIDs used by proxy agents to decide when they
should wait for another cell’s proxy tour to complete before
deconfliction can occur, thus preventing race conditions

Table VI. Distributed Deployment Algorithm

DISTRIBUTED DEPLOYMENT()

1: { Communication Thread}
2: while true do
3: in message← In Buffer[i].PopFirst();
4: update NeighborData[i] according to inmessage;
5: if statechangeinterrupt[i] or visible agentinterrupt[i] then
6: broadcast internal state information;

7: { Navigation Thread}
8: while true do
9: while Route[i] is not emptyand p[i] 6= Route[i].First() and c

[i]
ξproxied

.Wait Set is empty
do

10: u[i] ← velocity with magnitudeumax and direction towards Route[i].First();
11: u[i] ← 0;
12: if p[i] == Route[i].First() then
13: Route[i].PopFirst();

14: { Internal State Transition Thread}
15: while true do
16: if mode[i] == lead then
17: LEAD(); { See Tab. VII}
18: else if mode[i] == proxy then
19: PROXY();{ See Tab. VIII}
20: else if mode[i] == explore then
21: EXPLORE();{ See Tab. IX}

than the parent, then the leader may have to either switch to proxy mode to proxyfor another leader
in line of sight (if the candidate cell is primary), or else wait for the other cellto be proxied (if the
candidate cell is secondary). If the agent determines that a contending or permanent cell other than
the parent containsg, then it deletes the cell and a phantom wall is labeled.

A leader agent may assign tasks once it has initialized cell(s) in its memory. The assignment may
be of an explorer to become a leader of a child vertex, of an explorer to become a proxy, of a leader
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Table VII. Distributed Deployment Subroutine

LEAD()

1: { Attempt cell construction}
2: if there is a vantage pointpξ in VantagePoints[i] for which no cell has yet been constructed

and p[i] == pξ then
3: if at least one triangle can be made available forcξ then
4: initialize cξ with statusretracting and insert into Cells[i];
5: else
6: delete(pξ, cξ);

7: { Assign tasks}
8: if Cells[i] has a permanent cell with unexplored gap edgeg then
9: assign an agent to become leader atg;

10: else if Cells[i] contains nonpermanent cellc
[i]
ξ

in need of a proxythen

11: assign some agent to proxyc
[i]
ξ

;

12: { React to deconfliction events}

13: if cell cξ in Cells[i] corresponds to a cellc[j]
ξproxied

in NeighborData[i] then

14: update allcξ data fields to matchc[j]
ξproxied

;

15: if NeighborData[i] shows a proxy has deleted a cell corresponding tocξ in Cells[i] or
`

NeighborData[i] shows contending cellc[j]
ξproxied

in branch conflictwith contending cellcξ

in Cells[i] and ξ
[j]
proxied < ξ

´

then
16: delete(pξ, cξ);
17: if NeighborData[i] shows a cell has been deleted at child gap edgeg of cell cξ in Cells[i]

then
18: labelg asphantom wall in cξ;
19: if NeighborData[i] shows a proxy tour was successfully completed without deletion for a

cell cξ in Cells[i] then
20: advancecξ.status;cξ.proxy uid← ∅;

21: { Propagate sparse vantage point information}
22: if there is an unlabeled vantage pointpξ in VantagePoints[i] with permanent cellcξ in

Cells[i] and
`

(pξ, cξ) is a leafor Cells[i] and NeighborData[i] show all child vantage
points have been labeled

´

then
23: if |Vcξ | == 3 and Cells[i] or NeighborData[i] shows a child vantage point labeled

sparse then
24: labelpξ asnonsparse;
25: else
26: labelpξ assparse;
27: if Cells[i] contains exactly one cellcξ with pξ labeledsparse and p[i] == pξ and

NeighborData[i] shows a cellcζ which is the parent ofcξ and pζ is labelednonsparse
then

28: insertcζ into Cells[i] andpζ into VantagePoints[i];

29: if NeighborData[i] shows a leader agentj with p
[j]
ξ1

labeledsparse and c
[i]
ξ2

== c
[j]
ξ2

and

ξ
[j]
2 is the parent PTVUID ofξ[i]

1 then

30: clearp[i]
ξ2

andc
[i]
ξ2

; Route[i] ← straight path top[i]
ξ1

;

to become a proxy, of itself to lead a secondaryTP vertex which is the child of its primary vertex
(this happens when the primary vertex is a triangle), or of another leader toa secondary vertex at a
double vantage point. Note that in making the assignments, all vantage points are selected according
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Table VIII. Distributed Deployment Subroutine

PROXY()

1: if Route[i] is nonemptyand NeighborData[i] shows proxied cell has not been deleted
then

2: if cproxied.status ==retracting then
3: { Truncatecξproxied

at permanent cell}

4: if NeighborData[i] shows permanent cellcξ in branch conflictwith c
[i]
ξproxied

then

5: truncatec[i]
ξproxied

at cξ;
6: { Prevent race conditions and deadlock}

7: if NeighborData[i] shows contending cellcξ in branch conflictwith c
[i]
ξproxied

and cξ.proxy uid 6= ∅ and
`

ξ
[i]
proxied /∈ cξ.Wait Setor ξ < ξ

[i]
proxied

´

then

8: c
[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set∪ ξ;
9: else

10: c
[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set\ ξ;
11: else if cproxied.status ==contending then
12: { Shoot-out with other contending cells}

13: if
`

NeighborData[i] shows contending cellcξ in branch conflictwith c
[i]
ξproxied

and

ξ < ξ
[i]
proxied

´

then

14: deletec
[i]
ξproxied

; mode[i] ← explore;
15: { Prevent race conditions and deadlock}

16: if NeighborData[i] shows retracting cellcξ in branch conflictwith c
[i]
ξproxied

and cξ.proxy uid 6= ∅ and
`

ξ
[i]
proxied /∈ cξ.Wait Setor ξ < ξ

[i]
proxied

´

then

17: c
[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set∪ ξ;
18: else
19: c

[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set\ ξ;
20: else
21: enter previous mode, explore or lead;

to the sameparity-based vantage point selection schemeused in the incremental partition algorithm
of Sec. 5.

So that the distributed representation ofTP remains consistent, a leader must react to several
deconfliction events. If a proxy truncates the boundary of a retracting cell,deletes a contending cell,
advances the status of a cell, or adds/removes PTVUIDs to a cell’s WaitSet, then the corresponding
leader of that cell must do the same. In fact, whenever two agents (either proxies or leaders)
communicate and their contending cells are in branch conflict, the cell with lower PTVUID will be
deleted. Every such cell deletion results in a phantom wall being marked in theparent cell. Although
it is not stated explicitely in the pseudocode, note that when a cell is deleted theleader must wait
briefly at the cell’s vantage point until any agent that was proxying comes back to the parent cell;
otherwise the proxy could lose line of sight with the rest of the network. If aproxy tour is completed
successfully without cell deletion, then the cell status is advanced towardspermanent.

By settling only to sparse vantage points, fewer agents are needed to guarantee full coverage.
This is accomplished by agents swaping permanent cells with other leaders in such a way that
the information about which vantage points are sparse is propagated upTP whenever a leaf is
discovered. Each cell swap involves an acquisition by one agent (lines 27-28) and a corresponding
surrender by another (lines 29-30).
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Table IX. Distributed Deployment Subroutine

EXPLORE()

1: if NeighborData[i] shows a permanent cellcξ whereξ == ξ
[i]
current then

2: ξ′ ← PTVUID of next vertex indepth-first ordering;
3: if gap edgeg at ξ′ has already been assigned a leaderthen
4: { Continue exploring}

5: ξ
[i]
last ← ξ

[i]
current; ξ

[i]
current ← ξ′;

6: Route[i] ← local shortest path to midpoint ofg throughcξ;
7: else if gap edgeg at ξ′ has agenti labeled as its leaderthen
8: { Become leader}

9: mode[i] ← lead; p
[i]
ξ1
← pξ′ ;

10: Route[i] ← local shortest path topξ′ throughcξ;

11: else if NeighborData[i] shows a cellcξ such thatcξ.proxy uid == i and ξ 6= ξ
[i]
proxied

then
12: { Become proxy}

13: mode[i] ← proxy; c
[i]
ξproxied

← cξ;

14: Route[i] ← tour which traverses all gap edges ofcξ and returns to parent gap edge;
15: if NeighborData[i] showsc

ξ
[i]
current

has been deletedthen

16: { Move up partition tree away from deleted cell}

17: Route[i] ← local shortest path towardscξlast
; swapξ

[i]
last andξ

[i]
current;

6.2. Proxy Behavior

The PROXY() subroutine of the internal state transition thread, called on line 19 of Table VI, is
shown in Table VIII. One of two main behaviors are executed depending on whether the proxied
cell has statusretracting (lines 2-10) orcontending (lines 11-19). Suppose an agenti is
proxying for a cellcξ in leader agentj’s memory. Then agenti keeps a local copy ofcξ in c

[i]
ξproxied

and modifies it during the proxy tour. Agentj updatescξ to matchc
[i]
ξproxied

whenever a change

occurs. If agenti is proxying for a retracting cell, then it traverses the gap edges ofc
[i]
ξproxied

while
truncating the cell boundary at any encountered permanent cells in branch conflict. The goal is for
the retracting proxied cell to not be in branch conflict with any permanent cells by the end of the
proxy tour when its status is advanced tocontending. If agenti encounters a contending cell, say
cξ′ , and the criteria on line 7 are satisfied, then agenti must pause its proxy tour, i.e., pause motion
until cξ′ becomes permanent or deleted. If the proxy were not to pause, then it would run the risk of
the contending cell becoming permanent after the opportunity for the proxyto perform truncation
had already passed. The pausing is accomplished by addingξ′ to the cell fieldc[i]

ξproxied
.Wait Set read

by the navigation thread. Once the proxy tour is over, the leader of the proxied cell advances the
cell’s status tocontending and the proxy agent enters its previous mode, either explore or lead.

If agenti is proxying for a contending cell, then the goal is for that cell to not be in branch conflict
with any other contending cells by the end of the proxy tour, if the cell’s statusis to be advanced to
permanent. To this end, agenti traverses the gap edges ofc

[i]
ξproxied

while comparingξ[i]
proxied with

the PTVUID of every encountered contending cell in branch conflict withc
[i]
ξproxied

. If a contending

cell with PTVUID less thanξ[i]
proxied is encountered, then the proxied cell is deleted and agenti

heads straight back to the parent gap edge where it will end the proxy tour and enterexplore
mode. If agenti encounters a retracting cell, saycξ′ , and the criteria on line 16 are satisfied, then
agenti must pause its proxy tour, i.e., pause motion, untilcξ′ becomes contending or truncated
out of branch conflict. If the proxy were not to pause, then it would run the risk of the retracting
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cell becoming contending after the opportunity for the proxy to perform deconfliction had already
passed. The pausing is accomplished by addingξ′ to the cell fieldc

[i]
ξproxied

.Wait Set read by the

navigation thread. Finally, if a contending cell with PTVUID less thanξ
[i]
proxied is never encountered,

then the leader of the proxied cell advances the cell’s status topermanent and the proxy agent
entersexplore mode.

Note that the use of PTVUID total ordering (Definition 6.2) on lines 7,13, and 16of PROXY()
precludes the possibility of both (1)race conditionsin which the status of cells is advanced before
the proper branch deconflictions have taken place, and (2)deadlocksituations where contending
and retracting cells are indefinitely waiting for each other.

6.3. Explorer Behavior

The EXPLORE() subroutine of the internal state transition thread, called on line 21 of Table VI, is
shown in Table IX. Of all agent modes,explore behavior is the simplest because all the agent
has to do is navigateTP in depth-first order (see Fig. 10 and 11) until a leader agent assigns
them to become a leader at an unexplored gap edge or to perform a proxytask. The local shortest
paths between cells (lines 6,10, and 17) can be computed quickly and easily by the visibility graph
method [26]. If the current cell that an explorer agent is visiting is ever deleted because of branch
deconfliction, the explorer simply moves upTP and continues depth-first searching. By having
each agent use a different gap edge ordering for the depth-first search, the deployment tends to
explore many partition tree branches in parallel and thus converge more quickly. In our simulations
(Sec. 6.5), we had each agent cyclically shift their gap edge ordering bytheir UID, subject to
the following restriction important for proving an upper bound on number ofrequired agents in
Theorem 6.4.

Remark 6.3(Restriction on Depth-First Orderings)
Each agent in an execution of the distributed deployment may searchTP depth-first using any child
ordering as long as every pair of child vertices adjacent at a double vantage point are visited in the
same order by every agent.

6.4. Performance Analysis

The convergence properties of the Distributed Depth-First Connected Deployment Algorithm of
Table VI are captured in the following theorems.

Theorem 6.4(Convergence)
Suppose thatN agents are initially colocated at a common pointp∅ ∈ VE of a polygonal environment
E with n vertices andh holes. If the agents operate according to the Depth-First Connected
Deployment Algorithm of Table VI, then

(i) the agents’ visibility graphGvis,E(P ) consists of a single connected component at all times,
(ii) there exists a finite timet∗, such that for all times greater thant∗ the set of vertices in the

distributed representation of the partition treeTP remains fixed,
(iii) if the number of agentsN ≥ ⌊n+2h−1

2 ⌋, then for all times greater thant∗ every point in the
environmentE will be visibile to some agent, and there will be no more thanh phantom walls,
and

(iv) if N > ⌊n+2h−1
2 ⌋, then for all times greater thant∗ every cell in the distributed representation

of TP will have statuspermanent and there will be preciselyh phantom walls.

Proof

We prove the statements in order. Nonleader agents, as we have defined their behavior, remain
at all times within line of sight of at least one leader agent. Leader agents likewise remain in the
kernel of their cell(s) of responsibility and within line of sight of the leader agent responsible for
the corresponding parent cell(s). Given any two agents, sayi andj, a path can thus be constructed
by first following parent-child visibility links from agenti up to the leader agent responsible for
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the root, then from the leader agent responsible for the root down to agent j. The agents’ visibility
graph must therefore consist of a single connected component, which is statement (i).

For statement (ii), we argue similarly to the proof of Theorem 5.3(i). During the deployment, cells
are constructed only at unexplored gap edges. A cell either (1) advances though a finite number of
status changes or (2) it is deleted during a proxy tour. Either way, each cell is only modified a finite
number of times and only one cell is ever created at any particular unexplored gap edge. Since
unexplored gap edges are diagonals of the environment and there are only finitely many possible
diagonals, we conclude the set of vertices in the distributed representationof TP must remain fixed
after some finite timet∗.

For statement (iii), we rely on an invariant: during the distributed deployment algorithm, at
least two unique triangles can be assigned to every leader agent which has at least one cell of
responsibility, other than the root cell, in its memory; at least one unique triangle can be assigned
to the leader agent which has the root cell in its memory. One of the triangles is ina leader’s own
cell (primary or secondary) and its existence is enforced by a leader whenever it initializes a cell in
Table VII. The second triangle is in a parent cell of a cell in the agent’s memory. The existence of
this second triangle is ensured by the depth-first order restriction stipulatedin Remark 6.3 together
with the parity-based vantage point selection scheme. Remembering that the maximum number of
triangles in any triangulation isn + 2h − 2 and arguing precisely as we did for the sparse vantage
point locations in the proof of Theorem 5.5(iii), we find the number of agents required for full
coverage can be no greater than⌊n+2h−1

2 ⌋. As in the proof of Theorem 5.3(v), the number of
phantom walls can be no greater thanh because if it where then some cell would be topologically
isolated.

Proof of statement (iv) is as for statement (iii), but because there is one extra agent and depth-
first is systematic, the extra agent is guaranteed to eventually proxy any remaining nonpermanent
cells intopermanent status and create phantom walls to separate all conflicting partition tree
branches.

Remark 6.5(Near Optimality without Holes)
As mentioned in Sec. 1,(n − 2)/2 guards are always sufficient and occasionally necessary for
visibility coverage of any polygonal environment without holes. This meansthat whenh = 0, the
bound on the number of sufficient agents in Theorem 6.4 statement (iii) differs from the worst-case
optimal bound by at most one.

Theorem 6.6(Time to Convergence)
Let E be an environment as in Theorem 6.4. Assume time for communication and processing are
negligible compared with agent travel time and thatE has uniformly bounded diameter asn → ∞.
Then the time to convergencet∗ in Theorem 6.4 statement (ii) isO(n2 + nh). Moreover, if the
maximum perimeter length of any vertex-limited visibility polygon inE is uniformly bounded as
n → ∞, thent∗ is O(n + h).

Proof
As in the proof of Theorem 6.4, every cell which is never deleted has at least one unique triangle and
there are at mostn + 2h − 2 triangles total, therefore there are at mostn + 2h − 2 cells which are
never deleted. The maximum number of phantom walls ever created ish (Theorem 6.4). Since cells
are only ever deleted when a phantom wall is created, at mosth cells are ever deleted. Summing
the bounds on the number cells which are and are not deleted, we see the total number of cells
any agent must ever visit during the distributed deployment isn + 2h − 2 + h = n + 3h − 2. Let
ld be the maximum diameter of any vertex-limited visibility polygon inE . Then, neglecting time
for proxy tours, an agent executing depth-first search onTP will visit every vertex ofTP in time
at most2umaxld(n + 3h − 2). Now Let lp be the maximum perimeter length of any vertex-limited
visibility polygon in E . Then the total amount of time agents spend on proxy tours, counting two
tours for each cell, is2umaxlp(n + 3h − 2). Exploring and leading agents operate in parallel and at
most every agent waits for every proxy tour, so it must be that

t∗ ≤ 2umax(lp + ld)(n + 3h − 2).
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While the diameter ofE being uniformly bounded impliesld is uniform bounded,lp may be
O(n).

The performance of a distributed algorithm can also be measured by agentmemory requirements
and the size of messages which must be communicated.

Lemma 6.7(Memory and Communication Complexity)
Let k be the maximum number of vertices of any vertex-limited visibility polygon in the
environmentE and supposeE is represented with fixed resolution. Then the required memory size
for an agent to run the distributed deployment algorithm isO(Nk) bits and the message size isO(k)
bits.

Proof
The memory required by an agent for its internal state is dominated by its cell(s)of responsibility
(of which there are at most two) and proxy cell (at most one). A cell requiresO(k) bits, therefore
the internal state requiresO(k) bits. The overall amount of memory in an agent is dominated by
NeighborData[i], which holds no more thanN internal states, therefore the memory requirement
of an agent isO(Nk). Agents only ever broadcast their internal state, therefore the messagesize is
O(k).

6.5. Simulation Results

We used C++ and the VisiLibity library [27] to simulate the Distributed Depth-First Deployment
Algorithm of Table VI. An example simulation run is shown in Fig. 1 for an environment
with n = 41 vertices andh = 4 holes. An animation of this simulation can be viewed at
http://motion.me.ucsb.edu/∼karl/movies/dwh.mov . To reduce clutter, we have
omitted from this larger example the agent mode and cell status color codes usedin Fig. 8, 9, 10,
and 12. The environment was fully covered in finite time by only 13 agents, whichindeed is less
than the upper bound⌊n+2h−1

2 ⌋ = 24 given by Theorem 6.4.

6.6. Extensions

There are several ways that the distributed deployment algorithm can be directly extended for
robustness to agent arrival, agent failure, packet loss, and removalof an environment edge.
Robustness to agent arrival can be achieved by having any new agents simply enterexplore
mode, settingξ[i]

current to be the PTVUID of the first cell they land in, and settingξ
[i]
last to be the

parent PTVUID ofξcurrent. The line-of-sight connectivity guaranteed by Theorem 6.4 allows single-
agent failures to be detected and handled by having the visibility neighbors of a failed agent move
back up the partition tree as necessary to patch the hole left by the failed agent. For robustness to
packet loss, agents could add a receipt confirmation and/or parity check protocol. If a portion of the
environment were blocked off during the beginning of the deployment butthen were revealed by an
edge removal (interpreted as the “opening of a door”), the deployment could proceed normally as
long as the deleted edge were labeled as anunexplored gap edge in the cell it belonged to.

Less trivial extensions include (1) the use of distributed assignment algorithms such as [28, 29]
for guiding explorer agents to tasks faster than depth-first search, or (2) performing the deployment
from multiple roots, i.e., when different groups of agents begin deploymentfrom different locations.
Deployment from multiple roots can be achieved by having the agents tack on aroot identifier to
their PTVUID, however, it appears this would increase the bound on numberof agents required in
Theorem 6.4 by up to one agent per root.

7. CONCLUSION

In this article we have presented the first distributed deployment algorithm which solves, with
provable performance, the Distributed Visibility-Based Deployment Problem with Connectivity in
polygonal environments with holes. We began by designing a centralized incremental partition
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algorithm, then obtained the distributed deployment algorithm by asynchronous distributed
emulation of the centralized algorithm. Given at least⌊n+2h−1

2 ⌋ agents in an environment with
n vertices andh holes, the deployment is guaranteed to achieve full visibility coverage of the
environment in timeO(n2 + nh), or timeO(n + h) if the maximum perimeter length of any vertex-
limited visibility polygon in E is uniformly bounded asn → ∞. If k is the maximum number
of vertices of any vertex-limited visibility polygon in an environmentE represented with fixed
resolution, then the required memory size for an agent to run the distributed deployment algorithm
is O(Nk) bits and message size isO(k) bits. The deployment behaved in simulations as predicted
by the theory and can be extended to achieve robustness to agent arrival, agent failure, packet loss,
removal of an environment edge (such as an opening door), or deployment from multiple roots.

There are many interesting possibilities for future work in the area of deployment and nonconvex
coverage. Among the most prominent are: 3D environments, dynamic environments with moving
obstacles, and optimizing different performance measures, e.g., based on continuous instead of
binary visibility, or with minimum redundancy requirements.
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12. Herńandez-Pẽnalver G. Controlling guards.Canadian Conference on Computational Geometry, Saskatoon, Canada,
1994; 387–392.

13. Pinciu V. A coloring algorithm for finding connected guards in art galleries.Discrete Mathematical and Theoretical
Computer Science, Lecture Notes in Computer Science, vol. 2731/2003, Springer, 2003; 257–264.
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