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ABSTRACT

Given a set of targets that need to be monitored and a vehi-
cle, we consider a combinatorial motion planning problem where
the objective is to find a path for the vehicle such that each tar-
get is visited at least once by the vehicle, the path satisfies the
motion constraints of the vehicle and the length of the path is a
minimum. This is an NP-hard problem and currently, there are
no algorithms that can find an optimal solution to this problem.
In this article, we model the motion of the vehicle as a Dubins
car and develop a method that can provide tight lower bounds to
the motion planning problem. We accomplish this by relaxing
the constraints corresponding to the angle of approach at each of
the targets and then penalizing them whenever they are violated.
The solution to the Lagrangian relaxation gives a lower bound,
and this lower bound is maximized over the penalty variables us-
ing subgradient optimization. The proposed method is the first of
its kind for finding tight lower bounds for combinatorial motion
planning problems and can be extended to similar problems with
more general motion constraints.

1 INTRODUCTION

For a given set of targets, the objective of the Traveling
Salesman Problem (TSP) is to find a tour of minimum distance
that starts from one of the targets and visit every other target at
least once and returns to the starting target. This problem was
studied extensively by several authors [1], [2] and [3]. The ob-
jective of the problem considered in this article is to find a path
for the vehicle such that each target is visited at least once by the
vehicle, the path satisfies the motion constraints of the vehicle
and the length of the path is a minimum. If the motion con-
straints are relaxed, this path planning problem reduces to the
Euclidean TSP. The vehicle can be an Unmanned Aerial Vehicle
(UAV) where the motion of the vehicle has to satisfy a given set
of constraints. The motion constraint we consider here is that
the yaw rate of the vehicle at any instance along its path is up-
per bounded by a constant. Problems of this type arise naturally
in military and civil applications where UAVs are used for bor-
der surveillance, forest fire monitoring, weather monitoring etc.
Given any two targets i, j, the motion constraints for the vehicle
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to travel from target i to target j are as follows:

ζ̇ = cosθ , η̇ = sinθ , θ̇ = u, |u| ≤Ω, (1)
ζ (0) = xi, η(0) = yi, θ(0) = θi, (2)
ζ (t f ) = x j, η(t f ) = y j, θ(t f ) = θ j, (3)

where (ζ (t),η(t)) is the position of the UAV at time t, and (xi,yi)
and (x j,y j) are the coordinates of the target i and j in the two di-
mensional plane respectively. θi and θ j represent a given heading
angle of the vehicle at targets i and j. θ̇ is the yaw rate and is
bounded from above by Ω. The minimum turning radius of the
vehicle is a function of Ω, was assumed to be 1 without loss of
generality. t f is the time when the vehicle reaches its final con-
figuration at (x j,y j,θ j). For a given set of targets N = (1,2, ...n),
i.e. coordinates of the n nodes, the vehicle has to start from one
of the targets, visit all the remaining targets and return to the
first target while satisfying all the motion constraints (1-3). If
the vehicle reaches a target j with a heading angle θ j, the head-
ing angle while leaving the target j should also be equal to θ j.
The objective of the path planning problem is to minimize the to-
tal distance travelled by the vehicle while visiting all the targets.
We refer to the vehicle with the motion constraints specified in
(1-3) as the Dubins vehicle, and the path planning problem as the
Dubins Traveling Salesman Problem (DTSP). If we relax the mo-
tion constraints of the vehicle, the shortest distance between any
two targets is the Euclidean distance. The corresponding routing
problem is an Euclidean Traveling Salesman Problem (ETSP)
and solving it provides a lower bound for the DTSP. The routing
problems of this genre were earlier studied in [4], [5], [6], [7]
and [8]. [4] and [5] provides an approximate solution guaran-
teed to be within a constant factor of optimum, [6] describes a
bead-tiling algorithm with asymptotic guarantees. In [7], a two
step approach is prescribed to solve a Multi Depot Multiple TSP.
The sequence of cities to be visited is solved as a combinato-
rial problem and the heading angles at each target are computed
using dynamic programming. The work in [8] deals with a Het-
erogeneous Multi Depot Multiple UAV Routing Problem (HMD-
MURP) which is in turn transformed into a standard Asymmetric
TSP and solved using the Lin-Kernighan Heuristic (LKH).

Dubins TSP is hard to solve as we have to find the optimal
heading angles and the optimal sequence of targets to be visited.
Currently, there are heuristics and approximation algorithms to
solve this DTSP in polynomial time. However, there are no al-
gorithms that can either find an optimal solution or a good lower
bound for the Dubins TSP. Lower bounds are important because
they can be used to corroborate the quality of the solutions pro-
duced by the heuristics or the approximation algorithms. In this
article, we are interested in finding a lower bound for the Dubins
TSP which is tighter than the existing lower bound provided by
the Euclidean TSP. A tighter lower bound is also useful in branch
and bound procedures for discarding a set of solutions that are
guaranteed not to contain the optimal solution.

We compute the lower bounds for the Dubins TSP using La-

grangian relaxation. A Lagrangian relaxation is obtained by re-
moving some of the constraints in the Dubins TSP and penalizing
them in the objective whenever it is violated. Using the weak du-
ality theorem, it is well known that this Lagrangian relaxation is
a lower bound to the primal problem. In this article, the objective
function of the Lagrangian relaxation is posed as an asymmetric
TSP where the cost of traveling each edge is computed by solv-
ing a variational problem. This asymmetric TSP is solved using
the Lin-Kernighan heuristic (LKH) [9] which is one of the best
known heuristics for the TSP in the literature. For any given set
of dual variables, the solution of this relaxation gives a lower
bound to the Dubins TSP. Therefore, subgradient optimization
techniques are used in order to obtain the best lower bound.

This paper is organized in the following format. The prob-
lem statement is presented in section 2. In section 3, computation
of a lower bound from Lagrangian relaxation and subgradient op-
timization is explained. Numerical results and comparison with a
transformation technique from [8] are presented in sections 4,5.

2 PROBLEM FORMULATION
Let N be a set of n targets and E be the set of edges between

the n targets. (xi,yi) are the x and y coordinates of target i on
an x− y plane, θi is the heading angle of the Dubins vehicle at
target i. Let T be the set of all tours on the graph given by the
locations of the targets and Θi be the set of allowed headings for
the ith target. Let x be the incidence matrix of decision variables,
whose entry in the ith row and jth column is xi j. We will say
that x ∈ T , if the incidence matrix corresponds to a tour. The
traveling salesman problem for a Dubins vehicle can be stated as
following:

J∗ = min
θi,xi j

∑
(i, j)∈E

di j(θi,θ j)xi j. (4)

subject to:

x ∈ T, θi ∈Θi, i ∈ N, (5)

where di j(θi,θ j) is the length of the shortest path of the Dubins
vehicle starting from target i at (xi,yi) with a heading θi, going
to target j at (x j,y j) with a heading θ j. di j can be expressed in
terms of the dynamics of the Dubins vehicle as:

di j(θi,θ j) = min
ui j

ti j, (6)

Subject to

ζ̇i j = cosθi j, η̇i j = sinθi j, θ̇i j = ui j, |ui j| ≤Ω, (7)
ζi j(0) = xi, ηi j(0) = yi, (8)
ζi j(ti j) = x j, ηi j(ti j) = y j, (9)
θi j(0) = θi, θi j(ti j) = θ j, (10)
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Here ζi j and ηi j are the displacement variables of the Dubins ve-
hicle in x and y directions, θi j(t) is the angle made by the tangent
to the path of the vehicle at time t with the x-axis and ti j is the
time at which the vehicle reaches target j. Suppose the final tour
contains the edges (i, j) and ( j,k), the final heading of the vehi-
cle traveling from target i to target j should be equal to the initial
heading while traveling from target j to target k. That is at each
target the heading of arrival is same as the heading of departure.
We do not know which target precedes which in the final tour, but
we know that there is only one edge going towards target j and
only one edge going out of it. So, we can make use of the binary
variables xi j and sum over the index i ∈ N to write the heading
angle constraint as:

∑
i:(i, j)∈E

θi j(ti j)xi j− ∑
k:( j,k)∈E

θ jk(0)x jk = 0, (11)

∀ j ∈ N.

Equations (10) and (11) are in general a difficult constraints to
deal with. The domain of θi j is cylindrical and one has to identify
0 and 2π as one and the same. Instead we will pose these con-
straints in terms of sines and cosines of the angles θi j as shown
below:

cosθi j(0) = cosθi, sinθi j(0) = sinθi, (12)
cosθi j(ti j) = cosθ j, sinθi j(ti j) = sinθ j. (13)

The constraint on the heading angles (11) at each target j can be
written in terms of sines and cosines as:

∑
i:(i, j)∈E

cosθi j(ti j)xi j− ∑
k:( j,k)∈E

cosθ jk(0)x jk = 0, (14)

∑
i:(i, j)∈E

sinθi j(ti j)xi j− ∑
k:( j,k)∈E

sinθ jk(0)x jk = 0, (15)

∀ j ∈ N.

3 Main Result

3.1 Computation of lower bound

The solution of a Lagrangian relaxation problem obtained by
penalizing some of the constraints readily gives a lower bound
for the original minimization problem. A lower bound for the
minimization problem defined by equations (4) to (15) can be
computed by penalizing the objective function(4) with the con-
straints (14) and (15) using dual variables Π = [α j,β j], α j, β j ∈

ℜ, j = 1ton.

L(Π) = min
θi,xi j

∑
(i, j)∈E

di j(θi,θ j)xi j (16)

− ∑
j∈N

α j

[
∑

i:(i, j)∈E
cosθi j(ti j)xi j− ∑

k:( j,k)∈E
cosθ jk(0)x jk

]

− ∑
j∈N

β j

[
∑

i:(i, j)∈E
sinθi j(ti j)xi j− ∑

k:( j,k)∈E
sinθ jk(0)x jk

]
.

Here the summations are expanded and the terms are rearranged
as shown in equation (17). Also cosθi j(ti j) and cosθ jk(0) can be
replaced with cosθ j, and similarly sinθi j(ti j) and sinθ jk(0) can
be replaced with sinθ j, and thus equation (16) reduces to

L(Π) = min
θi,xi j

∑
(i, j)∈E

[di j(θi,θ j)−α j cosθ j−β j sinθ j (17)

+αi cosθi +βi sinθi]xi j.

≥min
xi j

∑
(i, j)∈E

min
(θi,θ j)

[di j(θi,θ j)−α j cosθ j−β j sinθ j (18)

+αi cosθi +βi sinθi]xi j.

Let us call the objective function in (18) J(Π).

J(Π) = min
xi j

∑
(i, j)∈E

min
(θi,θ j)

[di j(θi,θ j)−α j cosθ j (19)

−β j sinθ j +αi cosθi +βi sinθi]xi j.

Theorem: For any given Π, the solution of the minimization
problem with the objective function (19) and constraints (5) is a
lower bound to the Dubins TSP (4) to (5) and (14) to (15).
Proof: Clearly L(Π) in (16) is the Lagrangian relaxation of the
primal problem (4). The weak duality theorem states that for a
minimization problem, the solution of the Lagrangian relaxation
is less than any primal feasible solution. Therefore, (L(Π)) is
a lower bound to the DTSP in (4). One can see that J(Π) is
always less than L(Π) from equation (18). Thus for any given
Π, the solution to (19) is a lower bound to the Dubins Traveling
Salesman Problem.

Consider the following variational problem

νi j(αi,α j,βi,β j) = min
θi,θ j∈Θ

di j(θi,θ j)−α j cosθ j (20)

−β j sinθ j +αi cosθi +βi sinθi.

where di j(θi,θ j) is given by equations (6) to (9) and (12) to (13).
di j(θi,θ j) is the minimum Dubins distance from the configura-
tion (xi,yi,θi) to (x j,y j,θ j) and can be calculated using the re-
sult from Dubins [10]. Given the values of αi,α j,βi,β j, one
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can compute νi j as prescribed here. Discretize the allowable
values of the heading angle and obtain a discrete set of head-
ing angles Θd = {θ1,θ2, .....θm}. We assume that this discrete
set of heading angles is the same for all the targets, i.e Θi =
Θd , ∀i ∈ N. Therefore, for every pair of θi,θ j ∈ Θd , the value of
di j(θi,θ j)−α j cosθ j−β j sinθ j +αi cosθi +βi sinθi can be cal-
culated. The minimum of all these values each corresponding
to a pair of θi,θ j ∈ Θd is νi j. Given Π = (α1, .....αn,β1, .....βn),
νi j is computed for every edge (i, j) ∈ E. Now the minimization
problem(19) can be stated as following:

J(Π) = min
xi j , i, j∈N ∑

(i, j)∈E
νi j(αi,α j,βi,β j)xi j, (21)

subject to

x ∈ T. (22)

This is an asymmetric traveling salesman problem where weight
of each edge is νi j. Once νi j is computed for all (i, j) ∈ E, the
ATSP can be solved using LKH heuristic, which is a lower bound
to the DTSP. The computation of a lower bound for a given set
of penalizing variables(Π) is summerized below:

1. Select the dual variables Π = (α1, ..αn,β1, ..βn).
2. Use Πk to formulate the Lagrangian relaxation and the vari-

ational problem(20).
3. Solve the variational problem (20) for every (i, j) ∈ E.
4. Solve the asymmetric Traveling Salesman Problem (21) us-

ing LKH heuristic.

Since J∗ is greater than J(Π) for any Π, one can maximize J(Π)
over the dual variables Π to compute a tighter lower bound.

J∗ ≥max
Π

J(Π). (23)

Since J(Π) is a combination of finite number of linear functions,
it is concave in Π. One technique that works well to maximize
this kind of problems is subgradient optimization.

3.2 Subgradient Optimization
Subgradient optimization is an iterative procedure where a

set of dual variables Πk+1 are computed after each iteration k
using Πk from previous iteration. The procedure starts with an
initial vector Π0, and after each iteration k, a new vector Πk+1 is
computed by taking a step along the subgradient direction:

Πk+1 = Πk +δ ksk, (24)

where sk is the subgradient direction and δ k is the step size along
the subgradient. We will explain this in the context of the fol-

lowing minimization problem.

J = min
x∈X

f (x),

subjected to:
Ax = b.

The Lagrangian relaxation obtained by relaxing the constraints
Ax = b is:

L = min
x∈X

f (x)+λ (b−Ax),

where λ = [λ1, ...λn] are the dual variables penalizing the con-
straint Ax = b. In general a subgradient direction for a problem
in this form can be given by [11] sk = b−Axk, where xk is the
solution of the dual problem in the iteration k. One can select a
constant step size or a diminishing step size or a Polyak’s step
size. The convexity of the Lagrangian function guarantees the
convergence of this subgradient optimization.

3.2.1 Implementation details of the subgradient
optimization technique: An important part of the subgra-
dient optimization technique is to find a direction of subgradient
and step size at each iteration k. Since constraints (14) and (15)
are relaxed, one can chose the following as the subgradient:

sk =

[
∑i:(i, j)∈E cosθ k

i j(ti j)xk
i j−∑k:( j,k)∈E cosθ k

jk(0)xk
jk

∑i:(i, j)∈E sinθ k
i j(ti j)xk

i j−∑k:( j,k)∈E sinθ k
jk(0)xk

jk

]
. (25)

Here xk
i j is the solution of (21) in the iteration k and the values of

θ k
i j are from the solution of the problem defined by equation (20)

in iteration k. The step size δ k at iteration k is computed using
Polyak’s rule:

δ k = γk Ju− J(Πk)
||sk|| , (26)

where Ju is any known upper bound to the DTSP, which can be
calculated using the result from [8] and γk is a constant initially
and reduces by a constant factor after a specified number of iter-
ations. This iterative procedure is outlined as below:

1. Initialize k = 0, Πk = Π0, γk = γ0.
2. Compute νi j as shown in (20), for all (i, j) ∈ E.
3. Solve the asymmetric TSP (21) to (22) using LKH routine.
4. If Jk−Jk−1

Jk−1 ≤ ε or k = kmax, go to 6.
5. Compute Πk+1 = Πk + δ ksk, where sk and δ k are given by

equations (25) and (26) respectively, set k = k +1 and go to
2.
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6. Stop the iterative procedure.

In step(4), ε > 0 is a small number specified to check the con-
vergence and kmax is the maximum number of iterations allowed.
γk was chosen to be 0.05 initially and is reduced by a factor of 2
after every 10 iterations. In the step(3), we used the readily avail-
able LKH implementation, which could take only integral values
for the edge weights as the input. But the value of νi j computed
in (20) might be any positive real number. So, we multiplied
these values with 1000 and rounded off to the nearest integers
so that they can be used as input to the LKH routine. The out-
put from the LKH routine is divided by 1000 to get the actual
length of the tour. The convergence of subgradient optimization
is quite slow after around 20 iterations and it shows a zigzag-
ging behaviour. We chose the best value of J(Π) after specified
number of iterations.

4 One in a set Transformation
To corroborate the performance of the proposed technique,

we also solve the DTSP using the method in Oberlin et. al [8].
In [8], the authors solve the DTSP (where the choice of the head-
ing angle at each target is restricted to a discrete set) by trans-
forming the DTSP into an asymmetric TSP. They replicate each
target m times such that each of the m replications correspond to
a possible heading angle. Now, the DTSP is posed as a problem
of finding a subtour for the vehicle such that exactly one copy of
each target is visited once and the total distance traveled by the
vehicle is a minimum. This problem is then transformed into an
asymmetric TSP using the method presented by Noon and Bean
in [12]. One can solve this asymmetric TSP using LKH heuris-
tic. The disadvantage of this transformation is that the problem
size increases with the number of discretizations of the head-
ing angle and hence, can become computationally more difficult
to solve. This algorithm readily gives an approximate solution
to the DTSP, which is an upper bound to the optimum. This
transformation method is useful because we can use the upper
bound provided by this transformation method for calculating the
Polyak’s step size in the subgradient optimization. This method
is also useful because it can provide a lower bound which in turn
can be used to compare with the lower bounds obtained using the
method proposed in this article.

5 NUMERICAL RESULTS
The plots of the lower bound versus the number of itera-

tions of subgradient optimization for two problem instances with
20 targets and 40 targets are shown in Figure 1(a) and Fig-
ure 1(b). Each of the figures also show the plots for different
discretizations(Θd) of the heading angle. As the size of the set Θd
is increased, the lower bound reduces. This is because the solu-
tion of the variational problem (20) gives a better minimum with
more discretizations of the heading angle θ . One can also in-
fer from Figure 1(a) and Figure 1(b) that the final value of lower
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Figure 1. CONVERGENCE OF SUBGRADIENT OPTIMIZATION
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PROPOSED ALGORITHM. THESE RESULTS ARE FOR 32 DIS-
CRETIZATIONS OF THE HEADING ANGLE AT EACH TARGET.

bound also converges in terms of the size of the set Θd . The aver-
age of the percentage of improvement compared with the lower
bound after 20 iterations with 32 discretizations is plotted in Fig-
ure 2. Clearly, after 20 iterations, the improvement of the lower
bound is minimal even after 200 iterations of subgradient opti-
mization. Figure 3 shows the average computation time required
for all the algorithms as a function of the size of the problem.
Even though the computation time significantly increases as the
number of iterations increases, there is not much improvement in
the lower bound after 20 iterations. Therefore, one can stop the
iterative process after 20 iterations to find a good lower bound
within a reasonable amount of time.

Tables 1 and 2 compares the lower bound computed using
the proposed method with the lower bound computed from the
transformation method [8] for several instances. The first col-
umn in the tables indicate the size of an instance of DTSP. Sec-
ond column refers to the optimal cost corresponding to the Eu-
clidean TSP (which is basically the DTSP without any motion
constraints). The lower bounds obtained using the transforma-
tion method and the proposed subgradient method are listed in
third and fourth columns respectively. The proposed Lagrangian
dual algorithm performs better than the transformation method
in 28 out of 40 cases with 32 discretizations and in all the 40
cases with 64 discretizations. The transformation method gives
a better lower bound in few cases especially when the problem
size is small. But as the size of the problem or the number of dis-
cretizations of heading angle increases, the proposed algorithm
performs better. In few cases, the lower bound from the trans-
formation method is less than the Euclidean TSP and even neg-
ative. That is because the transformation method is dependent
on selecting an appropriate value for a parameter M as explained
in [8]. Our method guarantees a lower bound larger than the
bound provided by the Euclidean TSP and could be computed

within a reasonable amount of time. Also the proposed method
can be generalized to solve any variant of the motion constrained
TSP if the Lagrangian relaxation in (16) could be solved.

Table 1. LOWER BOUND COMPARISON WITH 32 DISCRETIZATIONS

Targets ETSP

Lower
bound
using
transfor-
mation

Lower
bound
using
proposed
algorithm

20 76.10 66.74 78.78
20 83.56 -44.91 87.79
20 64.44 67.44 66.82
20 86.55 93.83 90.33
20 68.95 54.39 73.18
20 66.91 65.00 69.69
20 75.76 77.54 77.63
20 76.46 84.35 79.47
20 75.30 77.77 78.23
20 84.97 85.97 87.78
30 86.30 82.20 89.72
30 86.94 64.66 91.72
30 78.34 92.61 83.19
30 92.71 81.53 96.85
30 80.53 87.70 84.64
30 84.76 64.49 88.88
30 95.33 93.51 100.19
30 99.22 59.96 104.50
30 88.48 86.49 93.30
30 91.15 84.95 95.25
40 105.05 72.16 108.78
40 99.54 75.66 105.31
40 90.58 106.40 96.52
40 99.93 73.04 105.92
40 108.28 117.20 113.19
40 106.74 104.57 111.70
40 96.98 93.15 100.25
40 100.86 107.94 105.16
40 103.37 71.69 108.04
40 99.71 121.39 106.42
50 114.20 91.66 122.04
50 111.90 127.31 116.45
50 117.42 110.39 122.88
50 117.72 95.69 124.99
50 115.98 120.90 123.61
50 118.90 99.76 125.13
50 119.06 98.18 122.75
50 113.31 124.73 118.04
50 123.73 139.14 129.35
50 113.03 118.58 118.81
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Table 2. LOWER BOUND COMPARISON WITH 64 DISCRETIZATIONS

Targets ETSP

Lower
bound
using
transfor-
mation

Lower
bound
using
proposed
algorithm

20 74.96 31.73 76.99
20 71.62 20.96 75.10
20 61.38 34.72 64.82
20 66.77 46.05 70.98
20 87.58 77.54 90.65
20 71.22 21.32 74.02
20 73.94 67.47 78.14
20 80.34 59.16 83.63
20 80.19 65.55 83.23
20 81.61 37.23 85.31
30 84.34 69.09 87.92
30 102.99 76.43 107.50
30 92.15 67.39 95.84
30 97.50 -24.09 102.77
30 93.62 53.38 97.41
30 94.45 54.38 98.37
30 85.95 72.83 90.69
30 90.72 66.25 95.13
30 98.83 72.33 101.90
30 90.42 87.01 93.11
40 99.05 1.28 103.47
40 109.69 -28.06 114.76
40 109.80 22.97 114.73
40 102.80 56.35 108.14
40 94.76 -19.25 99.15
40 102.26 89.24 108.58
40 98.60 44.68 103.70
40 104.76 92.01 109.53
40 106.48 99.92 110.99
40 100.38 65.18 104.38
50 110.70 97.58 115.74
50 106.74 77.94 112.09
50 115.05 77.93 120.75
50 105.21 69.02 111.83
50 112.48 102.60 116.90
50 115.25 2.76 122.33
50 123.63 56.82 130.62
50 110.73 -10.59 117.42
50 109.78 101.38 114.54
50 116.28 111.88 120.97

6 CONCLUSIONS
In this paper, we provided a method to compute a lower

bound for a vehicle routing problem with motion constraints.
This method is explained in detail for a unmanned vehicle mod-
eled as a Dubins car. This approach is quite general and can
extended to other routing problems with more general motion

constraints. The only requirement for this approach to work is
that the corresponding variational problem in (20) is solvable.
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