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Abstract— Safe integration of Unmanned Aircraft Systems
(UAS) into the National Airspace (NAS) will require the
development and fielding of a sense-and avoid (SAA) capa-
bility to augment the traditional “see-and-avoid” regulations
of manned aircraft. In this paper, we focus on the problem
of correctly predicting an intruder trajectory. Approaches to
intruder prediction are typically grouped into three categories:
(i) nominal (deterministic), (ii) worst-case, and (iii) probabilistic.
Most prediction algorithms envisioned for SAA fall within the
probabilistic category. The benefit of a probabilistic approach is
that it provides a mechanism to represent unknown variations
in the intruder state at future times while also avoiding
the overly conservative assumptions inherent in worst-case
prediction. The downside of a probabilistic prediction is that it
necessitates the construction of a stochastic model that is both
useful for computation and accurately represents the “true”
uncertainty in intruder predictions. Markovian structure and
time-discretization are very common simplifying assumptions
made to satisfy the first goal. Data-driven model tuning is
typically used for the latter. However, a model is never exact,
and a large quantity of data may be needed to guarantee the
approximation accuracy is sufficient.

The primary contribution of this paper is to present a
fourth option for intruder prediction that we refer to as
“robust probabilistic prediction.” It is meant to address the
risk of model mismatch associated with traditional probabilistic
predictions. Conceptually, the idea is to specify only those
features of the stochastic model that can be justified by data or
expert judgment, leaving a full stochastic model underspecified.
Typically, one needs a full stochastic model to “turn the crank”
on risk calculations (e.g., probability of Near Mid-Air Collision).
However, in robust probabilistic predictions, risk is defined as
the worst-case risk over a space of stochastic models. This
relaxes the need for ensuring that all elements of the model are
correct. We show that a computationally efficient semi-definite
program (SDP) can be used for performing the optimization
over the space of stochastic models. Such an approach greatly
reduces the risk of model mismatch as well as reducing the
data burden required for model validation.

I. INTRODUCTION
There is a significant need for developing a sense-and-

avoid (SAA) capability to allow Unmanned Aircraft Systems
(UAS) to safely integrate in the U.S. National Airspace. It
is envisioned that automated algorithms and decision aids
for detection, intruder prediction, and maneuver planning
will fill the gap left by direct visual perception, and this
has led to discussions within the UAS and broader aviation
communities about the best methods for quantifying the
various requirements, performance metrics, and uncertainties
needed to drive hardware and algorithm development. The
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complexity and scale of the problem will necessitate both
the development of new technology for “solving” the SAA
problem as well as new methods for verifying that developed
solutions actually achieve the expected performance when
deployed.

Here we investigate the portion of the SAA problem that
is concerned with modeling intruders. While the contribu-
tion is algorithmic, in so far as we develop methods for
quantifying conflict risk, we have an eye toward verification
and validation challenges. In this sense, we explore possible
algorithmic choices that can decrease the eventual cost of
fielding an SAA system.

A. Intruder Prediction Methodologies

Intruder prediction lies at the heart of sense-and-avoid.
Indeed, once a potential intruder is detected, the primary
function of an SAA system is to predict which action is
needed to avoid a future intruder conflict. As a consequence,
performing the prediction correctly is central to the success
of the overall system. Typically, three prediction methodolo-
gies are considered.
• Nominal (Deterministic) Prediction. A single trajectory

is used to predict the future trajectory of an intruder.
Legacy systems such as the Traffic Alert and Collision
Avoidance System (TCAS) [1] use a dead-reckoning
nominal prediction. Such an approach is conceptually
simple and facilitates efficient conflict prediction, but
is unable to represent uncertainty in future intruder
trajectories. This could introduce significant safety risks
in an SAA system, particularly in the presence of
maneuvering intruders (e.g., Visual Flight Rules (VFR)
traffic, small non-cooperative UAS, etc.).

• Worst-case Prediction. A single trajectory is used to
predict the future states of an intruder, but the trajectory
is optimized to create a conflict. Only the dynamic con-
straints of the intruder will bound its ability to cause a
conflict. While this approach provides the most rigorous
safety guarantees, it is impractically conservative for a
high density traffic airspace. In addition, the reachability
computations required for a worst-case analysis can be
computationally expensive.

• Probabilistic Prediction. Rather than considering a sin-
gle trajectory, the probabilistic approach considers a set
of possible intruder trajectories. Subsets of trajectories
within this set are weighted according to some proba-
bility measure that is induced by a particular stochastic
model. This prediction methodology natural lends itself
to quantifying risk in terms of the probability of future
conflict as well as quantifying SAA performance in
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the classical decision theoretic terms of probability of
detection and probability of false alarm.

Out of the three prediction methodologies, modern algo-
rithms for SAA tend to focus on probabilistic prediction.
Probabilistic prediction seems to offer an acceptable middle-
ground between the overly optimistic nominal prediction
and an overly conservative worst-case prediction. Further, it
provides a mechanism for tailoring SAA system behavior to
achieve a particular safety threshold measured, for instance,
by probability of Near Mid-Air Collision (NMAC). However,
these benefits are only realized if an appropriate stochastic
model for trajectory prediction can be developed. Much of
the variation in SAA algorithms stems from different answers
to this modeling question.

B. Modeling Intruders

Typically, a stochastic model used for intruder predic-
tion must satisfy two needs: (i) accurately represent the
uncertainty in an intruder trajectory and (ii) enable the
formulation and computation of required risk calculations.
Many air-traffic control predictions use Gaussian diffusion
models [2]. Data-driven approaches such as the MIT Lincoln
Labs Uncorrelated Conflict Model [3] use collected data
sets to train a Bayesian net that defines a dynamic Markov
model. An approach involving the authors has suggested the
use of stochastic maneuver-based models [4] to capture the
dynamics the target. However, all such approaches carry the
risk that the developed model will not accurately represent
the uncertainty in intruder behavior at the time of conflict
calculation.

Statistical analysis can help validate a particular stochastic
model and mitigate the risk of model mismatch. However,
the amount of data required to validate the accuracy of a
stochastic process with confidence is significant – requiring
validation of both the uncertainty in state at a particular time
and the correlations across time. The impact of this need for
data is two-fold. First, the intruder models may need to be
continually re-calibrated as the statistics of air traffic changes
over time – particularly as UAS are fully integrated into the
NAS. Indeed, this is a need that the proposed successor to
TCAS, Airborne Collision Avoidance System X (ACAS X)
[5], anticipates by allowing system updates with new intruder
statistics. The second impact is that it is can be difficult
to incorporate scenario specific information such as intruder
type, known holding patterns, terminal approach routes, etc.
into a stochastic model because sufficient data would be
needed for each of the multitude of possible combinations.

In this paper, we propose “robust probabilistic prediction”
as a principled alternative to traditional probabilistic predic-
tion that simultaneously reduces the risks of model mismatch
and data validation requirements. Rather than specify a
particular stochastic model, we propose to specify a space
of possible stochastic models based on a small number of
aggregate statistics. A worst-case risk calculation is then
performed by optimizing over the space of stochastic models.
Such an approach greatly reduces the chance for model
mismatch by reducing the number of model parameters. In

addition, it provides a method for inserting expert judgment
to perform probabilistic risk calculations when empirical data
is limited or lacking. The methods for solving this problem
utilize semi-definite programming (SDP) [6] for which fast
interior-point solution methods are available. The size of the
proposed SDP is small, involving matrices on the order of
10 × 10. Recent work developing interior-point solvers for
embedded systems [7] suggest that the proposed solution
methods could be made feasible for real-time operations.
In addition, this analysis technique could greatly reduce
the field testing requirements by quantifying the degree
to which specific stochastic modeling assumptions would
actually influence the behavior of the SAA system.

The remainder of this paper is laid out as follows. In
Section II we show that an intruder stochastic model used for
conflict risk prediction can be reduced to a finite-dimensional
random variable. This is the first step in reducing a stochastic
process to a more manageable object. In Section III, we
develop the semi-definite program used for performing the
robust conflict prediction. Section IV provides an illustrative
example for proposed approach, and we provide concluding
remarks in Section V.

II. STOCHASTIC PROCESSES FOR CONFLICT PREDICTION

A continuous-time, stochastic process is an infinite-
dimensional object. Even for the limited subset of Markov
processes, it can be very difficult to put useful and meaning-
ful bounds on the space. However, in SAA applications, the
ultimate use of a stochastic process is to provide methods
for quantifying future conflict risk, and for this particu-
lar application a much simpler, finite dimensional object
is sufficient. It is worth noting that our approach avoids
discretizing the time dimension. While such an approach
would produce a strictly, finite-dimensional random variable,
the number of needed dimensions would explode if a very
fine-discretization were needed to capture the fast time scales
of a conflict event. The proposed approach maintains a
continuous time dimension to avoid these concerns.

In the following, we will assume that vector X(t) repre-
sents the intruder trajectory over a time horizon t ∈ [0, T ].
Without loss of generality, we assume that the time variable
t is appended to the state vector X(t) and that X(t) has been
normalized with respect to the ownship trajectory so that the
conflict region C is a fixed subset of the state space. In the
case of NMAC, this region C would be the protection volume
of the ownship. Other conflict regions are possible as well.
For instance, a region C that is useful for the Self-Separation
(SS)S function of sense-and-avoid [8] may define the state in
which the predicted closing rate is less than some threshold
because this would activate the Collision Avoidance (CA)
function. We assume that conflict occurs if X(t) penetrates
the region C at any point during a time horizon [0, T ] and
we are primarily interested in the probability that this occurs.
The following claim establishes that the stochastic process
X(t) can be equivalently represented by a finite-dimensional
random vector Y .
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Claim 1: Let X(t) ∈ Rn be an n-dimensional, real-
valued, continuous stochastic process defined over a time
horizon t ∈ [0, T ], and C ⊂ Rn be a closed region defining
“conflict” states. Let Pc denote the probability of conflict at
some point over a time horizon.

Pc = P

 ⋃
t∈[0,T ]

{X(t) ∈ C}


Then there exists an n-dimensional random variable Y such
that

P [Y ∈ C] = Pc.
Proof: We prove this claim by explicit construction of

Y . Let Ω define the sample space for the stochastic process
X(t) and the random variable Y . Let X(t;ω) define the
sample path associated with ω ∈ Ω. Let Tc(ω) denote the
possibly empty subset of conflict times

Tc(ω) , {t | X(t, ω) ∈ C, 0 ≤ t ≤ T} .

Note that Tc is a closed set because X is continuous and C
is closed. We will define the time random variable τ∗ as

τ∗(ω) ,

{
0 Tc(ω) = ∅
inf Tc(ω) otherwise

(1)

Define Y as
Y (ω) , X (τ∗(ω);ω)

Assume there exists a t such that X(t;w) ∈ C, then Tc(ω)
is non-empty. Further, inf Tc(ω) ∈ Tc and thus Y (ω) ∈ C.
This implies that P [Y ∈ C] ≥ Pc. On the other hand, if there
does not exist t such that X(t;ω) ∈ C, then X(0;ω) 6∈ C
and thus Y (ω) 6∈ C implying Pc ≥ P [Y ∈ C].

III. ROBUST PROBABILISTIC CONFLICT RISK

The random variable Y constructed in Claim 1 provides
a vehicle for bounding the space of stochastic processes by
bounding the probability laws for Y . We do this by bounding
the mean and covariance for Y , and then leveraging general-
ized Chebyshev bounding techniques [9]. To understand how
such bounds are constructed, we return to the the stochastic
process X(t) and decompose it into a “deterministic” part
and a “stochastic” part. Let

X(t;ω) = X̄(t) + ∆(t;ω).

In this decomposition, X̄(t) can be the mean trajectory
EX(t), but it is not strictly required for what follows.
∆(t;ω) is variation from this nominal path. Note that this
decomposition induces a similar decomposition for Y

Y (ω) = X̄(τ∗(ω)) + ∆(τ∗(ω), ω) (2)

Thus Y can be thought of as the sum of two random
vectors X̄ and ∆. Note that while, X̄(t) is the deterministic
component of X(t), the vector X̄(τ∗(ω)) is a stochastic
quantity due to the stochastic nature of the evaluation time.
Our approach to bounding the moments for Y is to bound
the moments of X̄(τ∗(ω)) and ∆(τ∗(ω);ω).

A. Semi-Definite Programming Bounds

For the quantity X̄ , we know the support for the dis-
tribution. It is exactly the bounded subspace {X(t) | t ∈
[0, T ]}, and this provides a straight-forward way to bound
the statistics. The bounds for ∆ are related to the variations
of the stochastic process. We present a method for defining
convex bounds on ∆ from moment trajectories of X(t) in
Section III-B. With bounds on X̄ and ∆, we can compute a
worst-case bound on the conflict probability. If the conflict
region C is defined by a quadratic form, the optimization
can be performed via semi-definite programming.

Claim 2: Let X̄(t) be the nominal path for an n-
dimensional stochastic process X(t) given by

X̄(t) =

m∑
i=0

Pibi,m(t/T ) (3)

where bi,m are Bernstein polynomials of degree m and Pi

are control point vectors. Let H = {(ηj , aj)} be the set
of hyperplanes defining facets of conv({Pi}) expressed as
tuples of inward facing normal vectors and offsets.

Let X̄,∆ be random variables defined as in (2). Assume
∆ is bounded by the a set of constants constraints {(c−ij , c

+
ij)}

for (i, j) ∈ [1...n]× [1...n] according to

c−ij ≤ E∆2
ij ≤ c+ij

Let the conflict region C be defined by a quadratic
constraint

C =
{
x ∈ Rn | trace(AxxT ) + 2bTx+ c ≤ 0

}
(4)

Then
Pc ≤ λ

where λ is given by the outcome of the following semi-
definite program.

min 1− λ

s.t.
[
Z z
zT λ

]
� 0Y11 Y12 y1

Y21 Y22 y2
yT1 yT2 1

 � 0

[
Z z
zT λ

]
�
[
Y11 + Y12 + Y21 + Y22 y1 + y2

yT1 + yT2 1

]
trace(AZ) + 2bT z + cλ ≤ 0

Bounds for X̄: (i, j = 1, ...|H|)
ηTj y1 ≥ aj
trace(ηjη

T
i Y11)− (aiηj + ajηi)

T y1 + aiaj ≥ 0

Bounds for ∆: (i, j = 1, ..., n)
c−ij ≤ [Y22]ij ≤ c+ij

Proof: Using Claim 1, there exists a Y such that
Pc = P [Y ∈ C]. An upper bound for Pc follows from
constructing a lower bound for P [Y 6∈ C]. This lower
bound is computed by relaxing the SDP formulation for
generalized Chebyshev bounds of [9] by replacing known
moments on Y with bounds on moments. These unknown
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moments are represented by the auxiliary variables Y and
y with Y11, y1 representing the moments for X̄ and Y22, y2
the moments for ∆. The support for {X(t) | t ∈ [0, T ]}
is contained within the convex hull of {Pi} using a convex
hull property of Bernstein polynomials. Thus the mean of
X̄ must fall within this set. Further, these bounds limit the
possible second moment for X̄ along with the normal vectors
of this convex hull. The bounds on Y22 follow directly from
assumed bounds on E[∆2

ij ].

B. Bounds from Moment Trajectories
The purpose of robust probabilistic predictions for SAA

is to make it easier to faithfully represent uncertainties
in intruder motion by decreasing the number of modeling
decisions and decreasing the data burden required to validate
those decisions. It is in this spirit, that we explore partial
representations of intruder uncertainty that are “natural” or
otherwise amenable to input from experts and/or empirical
data analysis. A very common method for representing
uncertainty in a stochastic processes is through moment
trajectories (e.g., EXk(t)). Such trajectories are insufficient
for completely specifying the stochastic model but they
are intuitively appealing (e.g., nominal trajectory, covariance
growth over time, etc.) and straight-forward to estimate from
empirical data because correlation across time is not needed.
As such, we take moment trajectories as our assumed incom-
plete description for the stochastic process. In this section
we will show how bounds for the moments on the variable
∆(τ∗(ω);ω) can be obtained using moment trajectories of
the form {E[Xk1

i (t)Ẋk2
i (t)]} for k1, k2 ∈ {0, 1, 2}. Explicit

quantification of correlation between time periods is not
needed.

We will begin with a pair of simple lemmas that are useful
for constructing bounds.

Lemma 1: Let Z(t) be a differentiable, time-varying func-
tion. Then

sup
t∈[0,T ]

Z(t) ≤ Z(0) + Z(T )

2
+
T 1/2

2

(∫ T

0

Ż2(s) ds

)1/2

.

(5)
Proof: This result follows from a classical result in

Parzen [10]. Note that

Z(t) = Z(0) +

∫ t

0

Ż(s) ds

and similarly

Z(t) = Z(T )−
∫ T

t

Ż(s) ds

so that

Z(t) =
1

2
(Z(0) + Z(T )) +

1

2

∫ T

0

sgn(t− s)Ż(s) ds

From here we have∫ T

0

sgn(t− s)Ż(s) ds ≤
∫ T

0

|Ż(s)| ds

≤ T 1/2

(∫ T

0

Ż2(s) ds

)1/2

The right hand side is not dependent on t, so taking supre-
mum over t yields the result.

Corollary 1: This analysis can be easily extended to pro-
vide lower bounds for the Z as well.

inf
s∈[0,T ]

Z(s) ≥ Z(0) + Z(T )

2
− T 1/2

2

(∫ T

0

Ż2(s) ds

)1/2

A time-dependent bound on Z(t) also holds.
Lemma 2: Let ‖Ż‖∞ = sup

s∈[0,T ]

|Ż(s)|. Then

Z(0)− t‖Ż‖∞ ≤ Z(t) ≤ Z(0) + t‖Ż‖∞ (6)
Now we are in a position to obtain bounds for ∆.
Claim 3: Let

Dij(t;ω) , (Xi(t;ω)− X̄i(t))(Xj(t;ω)− X̄j(t)).

Then the following bounds hold:

E [∆i∆j ] Q
1

2
(EDij(0) + EDij(T ))

± T 1/2

2

(∫ T

0

E
[
Ḋij(s)

2
]
ds

)1/2

(7)

E [∆i∆j ] Q E[Di(0)Dj(0)]± E
[
τ∗‖Ż‖∞

]
(8)

E [∆i∆j ] Q E[Di(T )Dj(T )]

∓T E
[
‖Ż‖∞

]
± E

[
τ∗‖Ż‖∞

]
. (9)

Proof: Let ∆ij(ω) = ∆i(τ
∗(ω);ω)∆j(τ

∗(ω);ω), and
note that

inf
s∈[0,T ]

Dij(s;ω) ≤ ∆ij(ω) ≤ sup
s∈[0,T ]

Dij(s;ω).

The first bound (7) follows directly by taking expectations
(with respect to Y ) and applying Jensen’s inequality to the
result from Lemma 1. The second and third bounds (8) and
(9) follow by taking expectations of Lemma 2.

The moment bounds for ∆i∆j expressed in (7) provide
the constant bounds for the ∆ variables shown in the SDP
formulation from Claim 2. Intuitively, we would like to
have bounds for ∆ that are coupled to the statistics of the
conflict time τ∗. For instance, if the uncertainty in state X(t)
(measured by deviation from X̄(t)) increases across the time
horizon, this should be reflected in the moment bounds for
Y . The inequalities (8) and (9) provide such a mechanism. If
we assume that X(t) already includes t as a state variable,
then utilizing these time-correlated bounds merely requires
the augmentation of the SDP to include additional variables
{‖Ḋij‖∞}. Moment bounds for these new variables can be
provided directly (i.e., a further specification of the stochastic
model), or through the same process as was used to obtain the
constant bounds for ∆i∆j variables. This later step would
involve an indirect constraint on the acceleration moments
E
[
Ẋ(t)k1Ẍ(t)k2

]
for k1, k2 ∈ {0, 1, 2}.
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Fig. 1. Time-splitting improves bounds on X̄ variables. The worst-case
mean and covariance for X̄ obtained from the SDP optimization is shown in
dark blue. The conflict region C is shown in red. For the initial iteration the
mean of X̄ lies significantly off the nominal trajectory. A single refinement
improves this considerably. The corresponding worst case bounds go from
Pc ≤ 0.13 in iteration 0 to Pc ≤ .006 in iteration 1.

C. Iterative Refinement through Time-Splitting
In the SDP formulation from Claim 2, moments for X̄ are

bounded through a convex hull of the trajectory {X(t) | t ∈
[0, T ]}. If this trajectory differs significantly from straight-
line motion, then the developed bounds could be extremely
loose. Figure 1 demonstrates this phenomena. However, it
is possible to mitigate this effect through a time-splitting
process. Conceptually, the idea is to partition the time axis
so that [0, T ] = ∪iσi and a convex hull is constructed to
bound X̄ in each partition.

No essential change in the approach is needed for the
variation, we only required an augmentation of Y . We
introduce a partition indicator function

δi(t) ,

{
1 t ∈ σi
0 otherwise

and let
Y (i)(ω) , δi(τ

∗(ω))Y (ω)

The X̄ variables associated with each Y (i) are then bounded
by tighter convex hull for the trajectory {X(t) | t ∈ σi}. In
this formulation, we have

Pc = P
[⋃
{Y (i) ∈ C}

]
= 1− P

[⋂
i

{Y (i) ∈ C̄}

]
(10)

We define new random variable Ŷ by stacking the Y (i)

variables
Ŷ ,

[
Y (1) · · · Y (n)

]T
and define C(i) to obey

Ŷ ∈ C(i) ⇐⇒ Y (i) ∈ C.

Then we can re-write (10) as

Pc = 1− P

[⋂
i

{Ŷ ∈ C̄(i)}

]
.
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Fig. 2. Geometry for an example encounter. The ownship, heading due
South, encounters an intruder whose future trajectory is uncertain, but whose
nominal (mean) path includes a change of heading from North to North-
West.

The SDP formulation from [9] accommodates an intersection
of quadratic constraints, allowing the minimization over
probability laws for Ŷ to optimized as before. Note that
each partition increases the number of optimization variables
in the SDP linearly rather than quadratically as might be
expected. This is because the δi indicator functions induce
a block diagonal structure on E[Ŷ Ŷ T ]. Though a small
number of well-chosen refinements typically suffice, the
linear growth in complexity ensures that the partitioning
approach does not create a significant computational burden
even if the number of partitions is large.

IV. EXAMPLE
In this section, we demonstrate robust probabilistic pre-

diction on an simple two-dimensional example involving
an uncertain intruder. We consider a scenario in which the
nominal path intruder is flying at 140 knots and executing
a coordinated turn left. We consider an ownship that is
moving at a notional speed of 80 knots due South and at
coincident altitude. We parameterize the staring location, and
calculate bounds on the probability that NMAC occurs at
some point within a 60 second time horizon. The geometry
of the example encounter is shown in Figure 2.

In practice the moment trajectories used to bound
the variation around the nominal path would be gen-
erated by empirical data analysis and/or expert judg-
ment. Here we simulate this process by sampling from
a diffusion process with a “drift” that follows the no-
tional path and computing sample averages. The trajec-
tories {E

[
(X1(t)− X̄1(t))2

]1/2
,E
[
(X2(t)− X̄2(t))2

]1/2}
produced through this process are show in Figure 3. Using
Claim 3, we calculate the constant bounds on ∆1,∆2.

E∆2
1 ≤ 2.73e4 E∆2

1 ≤ 1.53e4

Using these bounds (and trivial lower bounds) along with
the polynomial fit for the nominal trajectory, we can compute
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Fig. 3. Moment trajectory for expected variation in position coordinates
(e.g., E

[
(X1(t) − X̄1(t))2

]1/2). Variation in the trajectory is due to the
polynomial approximation of the mean trajectory.

Fig. 4. Contour map for worst-case Pc bounds as a function of the starting
location of the ownship. The nominal intruder trajectory is shown by a
dashed line.

worst-case bounds for the probability of NMAC across a
range of ownship locations. A total of two time-splitting
refinements was used for to generate the contours. The results
are shown in the contour map in Figure 4.

V. CONCLUSION

In this paper, we have presented an approach to conflict
prediction for sense-and-avoid to mitigate the impact of
model mismatch for intruder prediction. This was done
by relaxing the requirements needed to specify a com-
plete probabilistic model and instead requiring only partial
specification of a stochastic process in terms of moments
trajectories. An SDP formulation is used to determine worst-
case upper bounds on the conflict probability by maximizing
over the space of stochastic processes.

This work suggest some interesting extensions for future
research. The most obvious would involve an exploration

of how tight the developed bounds can be made, and to
compare these bounds against those generated by specific
intruder prediction models such at Lincoln Labs uncorrelated
encounter model [3]. A related analysis task would be to use
the same methods for computing lower bounds on Pc. While
less useful in an operational system, both upper and lower
bounds will aid in understanding the extent to which the
details of a stochastic model actually matter for the conflict
risk calculations. In addition to this analysis, there are two
extensions to the developed approach that that may be
particularly useful for researchers developing SAA solutions.
The first is to study techniques for avoidance maneuver
planning that could leverage the SDP prediction approach.
Approaches such as ACAS X use a Markov Decision Process
(MDP) formulation that makes strong assumptions about the
intruder model (e.g., it’s a Markovian stochastic process) and
it would be interesting to understand the degree to which
these assumptions could be relaxed. A second, perhaps more
ambitious direction would pursue the extent to which the
robust prediction formulation could be used to relax the
“blunder scenario” assumptions inherent in existing stochas-
tic models. Current approaches assume that the intruder does
not respond to maneuvers of the ownship (i.e., it “blunders”
into the ownship) so that there is no feedback in the intruder
trajectory. This is clearly a modeling assumption that is in-
correct for some conflict scenarios, particularly for the longer
time scale conflict associated with the self separation (SS)
function of sense-and-avoid. Extending robust analysis to this
modeling question could help provide safety guarantees for
a SAA system in a broader range of encounters.
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